Gold Level

Question Paper 13

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Difficulty Level	Gold
Booklet	Question Paper 13

Time Allowed:	58 minutes
Score:	/48
Percentage:	$/ 100$

Grade Boundaries:

9	8	7	6	5	4	3	2	1
$>85 \%$	75%	65%	55%	45%	35%	25%	15%	$<15 \%$

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/
1 The grouped frequency table gives information about the lengths of time 160 students exercised one day.

Time (t minutes)	Frequency
$0<t \leqslant 40$	20
$40<t \leqslant 80$	35
$80<t \leqslant 120$	60
$120<t \leqslant 160$	33
$160<t \leqslant 200$	7
$200<t \leqslant 240$	5

(a) Complete the cumulative frequency table.

Time (t minutes)	Cumulative frequency
$0<t \leqslant 40$	
$0<t \leqslant 80$	
$0<t \leqslant 120$	
$0<t \leqslant 160$	
$0<t \leqslant 200$	
$0<t \leqslant 240$	

(b) On the grid, draw a cumulative frequency graph for your table.

(2)
(c) Use your graph to find an estimate for the lower quartile of the lengths of time the 160 students exercised.
minutes
(2)

2 A particle moves along a straight line.
The fixed point O lies on this line.
The displacement of the particle from O at time t seconds is s metres, where

$$
s=t^{3}-6 t+3
$$

(a) Find an expression for the velocity, $v \mathrm{~m} / \mathrm{s}$, of the particle at time t seconds.

$$
v=
$$

(b) Find the acceleration of the particle at time 5 seconds.

3 Make r the subject of the formula $A=4 r^{2}-\pi r^{2}$ where r is positive.

$$
r=
$$

\qquad

4

Diagram NOT accurately drawn

The diagram shows triangle $A B C$.
D is the point on $A B$, such that $C D$ is perpendicular to $A B$.
$A C=8.3 \mathrm{~cm}$.
$A D=4.7 \mathrm{~cm}$.
$B D=7.5 \mathrm{~cm}$.
Calculate the size of angle $A B C$.
Give your answer correct to 1 decimal place.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5 Given that x and y are positive integers such that $(1+\sqrt{x})(3+\sqrt{x})=y+4 \sqrt{5}$ find the value of x and the value of y.

$$
x=
$$

$$
y=
$$

\qquad

6 Simplify fully $\frac{x^{2}-16}{x^{2}-6 x+8}$

7

The diagram shows a regular pentagon inside a circle, centre O.
The points A and B lie on the circle such that $A B$ is a side of the pentagon.
$O A=7 \mathrm{~cm}$.
$T A$ is a tangent to the circle and $O B T$ is a straight line.
Calculate the area of triangle $A B T$.
Give your answer correct to 3 significant figures.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/
8 The functions f and g are such that $\mathrm{f}(x)=x+3$ and $\mathrm{g}(x)=\frac{1}{x-2}$
(a) Find $\operatorname{fg}(x)$

Give your answer as a single algebraic fraction expressed as simply as possible.
(b) Express the inverse function g^{-1} in the form $\mathrm{g}^{-1}(x)=\ldots$

$$
\mathrm{g}^{-1}(x)=
$$

\qquad

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemvexams.co.uk/

9 Peter wants to pass his driving test.
The probability that he passes at his first attempt is 0.7
When Peter passes his driving test, he does not take it again.
If he fails, the probability that he passes at the next attempt is 0.8
(a) Complete the probability tree diagram for Peter's first two attempts.
First attempt
Second attempt

(b) Calculate the probability that Peter needs exactly two attempts to pass his driving test.
(c) Calculate the probability that Peter passes his driving test at his third or fourth attempt.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemvexams.co.uk/
10 A farmer has 120 metres of fencing.
He is going to make a rectangular enclosure $P Q R S$ with the fencing.
He is also going to divide the enclosure into two equal parts by fencing along $M N$.

The width of the enclosure is x metres.
The length of the enclosure is y metres.
(a) (i) Show that $y=60-1.5 x$

The area of the enclosure $P Q R S$ is $A \mathrm{~m}^{2}$
(ii) S that $A=60 x-1.5 x^{2}$
(b) Find $\frac{\mathrm{d} A}{\mathrm{~d} x}$
(c) Find the maximum value of A.

