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1 Find the coefficient of x in the expansion of

@
x2

−
2

x

A5

. [3]

2 The first term in a progression is 36 and the second term is 32.

(i) Given that the progression is geometric, find the sum to infinity. [2]

(ii) Given instead that the progression is arithmetic, find the number of terms in the progression if

the sum of all the terms is 0. [3]

3

2.2 rad

O

A B

6 cm

The diagram shows part of a circle with centre O and radius 6 cm. The chord AB is such that

angle AOB = 2.2 radians. Calculate

(i) the perimeter of the shaded region, [3]

(ii) the ratio of the area of the shaded region to the area of the triangle AOB, giving your answer in

the form k : 1. [3]

4 (i) Prove the identity
tan x + 1

sin x tan x + cos x
� sin x + cos x. [3]

(ii) Hence solve the equation
tan x + 1

sin x tan x + cos x
= 3 sin x − 2 cos x for 0 ≤ x ≤ 20. [3]

5 A function f is such that f�x� = 15

2x + 3
for 0 ≤ x ≤ 6.

(i) Find an expression for f ′�x� and use your result to explain why f has an inverse. [3]

(ii) Find an expression for f −1�x�, and state the domain and range of f −1. [4]

6 A curve is such that
dy

dx
=

12��4x + a� , where a is a constant. The point P �2, 14� lies on the curve and

the normal to the curve at P is 3y + x = 5.

(i) Show that a = 8. [3]

(ii) Find the equation of the curve. [4]

© UCLES 2014 9709/13/M/J/14



3

7 The position vectors of points A, B and C relative to an origin O are given by

−−→
OA =

`
2

1

3

a
,

−−→
OB =

`
6

−1

7

a
and

−−→
OC =

`
2

4

7

a
.

(i) Show that angle BAC = cos−1
�

1
3

�
. [5]

(ii) Use the result in part (i) to find the exact value of the area of triangle ABC. [3]

8 (i) Express 2x2
− 10x + 8 in the form a�x + b�2

+ c, where a, b and c are constants, and use your

answer to state the minimum value of 2x2
− 10x + 8. [4]

(ii) Find the set of values of k for which the equation 2x2
− 10x + 8 = kx has no real roots. [4]

9 The base of a cuboid has sides of length x cm and 3x cm. The volume of the cuboid is 288 cm3.

(i) Show that the total surface area of the cuboid, A cm2, is given by

A = 6x2
+

768

x
. �3�

(ii) Given that x can vary, find the stationary value of A and determine its nature. [5]

10

x

y

O

y = 2x + 1

y = −x2 + 12x − 20

The diagram shows the curve y = −x2
+ 12x − 20 and the line y = 2x + 1. Find, showing all necessary

working, the area of the shaded region. [8]

[Question 11 is printed on the next page.]
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x

y

O

A

B

C

D

E �61
2
, 81

2
�

y = 3x

4y = x + 11

The diagram shows a parallelogram ABCD, in which the equation of AB is y = 3x and the equation

of AD is 4y = x + 11. The diagonals AC and BD meet at the point E
�
61

2
, 81

2

�
. Find, by calculation,

the coordinates of A, B, C and D. [9]
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