MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	41

Section A

1 (a) force is proportional to the product of the masses and inversely proportional to the square of the separation
(b) (i) gravitational force provides the centripetal force
$m v^{2} / r=G M m / r^{2}$ and $E_{K}=1 / 2 m v^{2}$
hence $E_{K}=G M m / 2 r$
(ii) 1. $\Delta E_{\mathrm{K}}=1 / 2 \times 4.00 \times 10^{14} \times 620 \times\left(\left\{7.30 \times 10^{6}\right\}^{-1}-\left\{7.34 \times 10^{6}\right\}^{-1}\right)$
$=9.26 \times 10^{7} \mathrm{~J}$ (ignore any sign in answer)
A1
(allow $1.0 \times 10^{8} \mathrm{~J}$ if evidence that E_{K} evaluated separately for each r)
2. $\Delta E_{\mathrm{P}}=4.00 \times 10^{14} \times 620 \times\left(\left\{7.30 \times 10^{6}\right\}^{-1}-\left\{7.34 \times 10^{6}\right\}^{-1}\right)$ C1
$=1.85 \times 10^{8} \mathrm{~J}$ (ignore any sign in answer)
A1
(allow 1.8 or $1.9 \times 10^{8} \mathrm{~J}$)
$\begin{array}{ll}\text { (iii) either }\left(7.30 \times 10^{6}\right)^{-1}-\left(7.34 \times 10^{6}\right)^{-1} \text { or } \Delta E_{K} \text { is positive } / E_{K} \text { increased } \\ \text { speed has increased } & \text { M1 }\end{array}$

2 (a) (i) sum of potential energy and kinetic energy of atoms/molecules/particles
reference to random
(ii) no intermolecular forces \quad B1
no potential energy
internal energy is kinetic energy (of random motion) of molecules B1 (reference to random motion here then allow back credit to (i) if M1 scored)
$\begin{array}{ll}\text { (b) } \begin{array}{l}\text { kinetic energy } \propto \text { thermodynamic temperature } \\ \text { either temperature in Celsius, not kelvin so incorrect }\end{array} & \text { B1 }\end{array}$ or temperature in kelvin is not doubled

3 (a) temperature of the spheres is the same no (net) transfer of energy between the spheres B1

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	41

(b) (i) 2.8 cm

A1 [1]
(ii) either gradient $=\omega^{2}$ and $\omega=2 \pi f$ or $a=-\omega^{2} x$ and $\omega=2 \pi f$

C1
gradient $=13.5 /\left(2.8 \times 10^{-2}\right)=482$
$\omega=22 \mathrm{rad} \mathrm{s}^{-1}$
C1
frequency $=(22 / 2 \pi=) 3.5 \mathrm{~Hz}$
A1
(c) e.g. lower spring may not be extended
e.g. upper spring may exceed limit of proportionality/elastic limit (any sensible suggestion)

B1

5 (a) (i) ratio of charge and potential (difference)/voltage
(ratio must be clear)
B1
(ii) capacitor has equal magnitudes of (+)ve and (-)ve charge B1
total charge on capacitor is zero (so does not store charge)
B1
$(+) v e$ and (-)ve charges to be separated M1
work done to achieve this so stores energy
A1
(b) (i) capacitance of Y and Z together is $24 \mu \mathrm{~F} \quad \mathrm{C} 1$
$1 / C=1 / 24+1 / 12$
$C=8.0 \mu \mathrm{~F}$ (allow 1 s.f.)
(ii) some discussion as to why all charge of one sign on one plate of X
$Q=(C V=) \underline{8.0 \times 10^{-6}} \times 9.0$ M1
$=72 \mu \mathrm{C}$
(iii) 1. $V=\left(72 \times 10^{-6}\right) /\left(12 \times 10^{-6}\right)$
$=6.0 \mathrm{~V}$ (allow 1 s.f.) (allow 72/12)
2. either $Q=12 \times 10^{-6} \times 3.0$ or charge is shared between Y and Z
charge $=36 \mu \mathrm{C}$
Must have correct voltage in (iii)1 if just quote of $36 \mu \mathrm{C}$ in (iii)2.

6 (a) (i) particle must be moving M1
with component of velocity normal to magnetic field
A1
(ii) $F=B q v \sin \theta$ M1
q, v and θ explained
A1
(b) (i) face BCGF shaded
(ii) between face BCGF and face ADHE
(c) potential difference gives rise to an electric field
either $F_{\mathrm{E}}=q E$ (no need to explain symbols) or electric field gives rise to force (on an electron)

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	41

7 (a) induced e.m.f./current produces effects/acts in such a direction/tends

(b) (i) 1. to reduce flux losses/increase flux linkage/easily magnetised and
demagnetised
2. to reduce energy/heat losses (do not allow 'to prevent energy losses') caused by eddy currents A1 (allow 1 mark for 'reduce eddy currents')
(ii) alternating current/voltage B1
gives rise to (changing) flux in coreB1
flux links the secondary coil M1
(by Faraday's law) changing flux induces e.m.f. (in secondary coil)

8 (a) discrete quantity/packet/quantum of energy of electromagnetic radiation energy of photon $=$ Planck constant \times frequency
(b) threshold frequency rate of emission is proportional to intensity max. kinetic energy of electron dependent on frequency max. kinetic energy independent of intensity (any three, 1 each, max 3)
(c) either $E=h c / \lambda$
or $h c / \lambda=e V$
$\lambda=450 \mathrm{~nm}$ to give
energy $=4.4 \times 10^{-19}$ or 2.8 eV
$2.8 \mathrm{eV}<3.5 \mathrm{eV}$ so no emission
work function of 3.5 eV to give $\lambda=355 \mathrm{~nm}$ $355 \mathrm{~nm}<450 \mathrm{~nm}$ so no

C1
M1
A1
or work function $=3.5 \mathrm{eV}$
threshold frequency $=8.45 \times 10^{14} \mathrm{~Hz} \quad \mathrm{C} 1$
$450 \mathrm{~nm}=6.67 \times 10^{14} \mathrm{~Hz} \quad$ M1
$6.67 \times 10^{14} \mathrm{~Hz}<8.45 \times 10^{14} \mathrm{~Hz}$

A1

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	9702	41

Section B

9 (a) e.g. zero output impedance/resistance infinite input impedance/resistance
infinite (open loop) gain
infinite bandwidth
infinite slew rate
1 each, max. 3
B3
[3]
(b) (i) graph: square wave M1
correct cross-over points where $V_{2}=V_{1} \quad$ A1
amplitude 5 V A1
correct polarity (positive at $t=0$) A1
(ii) correct symbol for LED M1
diodes connected correctly between $\mathrm{V}_{\text {Out }}$ and earth A1
correct polarity consistent with graph in (i) A1
(R points 'down' if (i) correct)

10 X-ray images taken from different angles/X-rays directed from different angles
of one section/slice
all images in the same plane
images combined to give image of section/slice
B1
images of successive sections/slices combined
B1
image formed using a computer
image formed is 3D image B1
that can be rotated/viewed from different angles
(four B-marks plus any two additional marks)

11 (a) e.g. noise can be eliminated/filtered/signal can be regenerated
extra bits can be added to check for errors
multiplexing possible
digital circuits are more reliable/cheaper
data can be encrypted for security
any sensible advantages, 1 each, max. 3
B3
(b) (i) 1. higher frequencies can be reproduced
2. smaller changes in loudness/amplitude can be detected
(ii) bit rate $=44.1 \times 10^{3} \times 16$
number $=7.06 \times 10^{6} \times 340$

$$
=2.4 \times 10^{8}
$$

A1

12 (a) (i) signal in one wire (pair) is picked up by a neighbouring wire (pair)
B1

(ii) outer of coaxial cable is earthed	B 1

outer shields the core from noise/external signals
B1

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	41

(b) attenuation per unit length $=1 / L \times 10 \lg \left(P_{2} / P_{1}\right)$
signal power at receiver $=10^{2.5} \times 3.8 \times 10^{-8}$

$$
=1.2 \times 10^{-5} \mathrm{~W}
$$

C1
attenuation in wire pair $=10 \lg \left(\left\{3.0 \times 10^{-3}\right\} /\left\{1.2 \times 10^{-5}\right\}\right)$ $=24 \mathrm{~dB}$ C1
attenuation per unit length $=24 / 1.4$
$=17 \mathrm{~dB} \mathrm{~km}^{-1}$
A1 [4]
(other correct methods of calculation are possible)

