MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/32

Paper 3 (Advanced Practical Skills 2), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – May/June 2014	9702	32	
1	(a)	(i)	Valu	e of l_0 in range 4.0 cm $\leq l_0 \leq$ 8.0 cm.		[1]	
	(b) ((iii)	Valu	ie of <i>h</i> to nearest mm, in the range 40.0 cm $\leq h \leq$ 50.0) cm.	[1]	
	(c)			of values for h and l scores 5 marks, five sets scores t trend -1 . Help from Supervisor -1 .	4 marks, etc.	[5]	
			nge: alues	s must include 20 cm or less.		[1]	
		Ea The	ch co e pre	headings: lumn heading must contain a quantity and an appropri esentation of quantity and unit must conform to a ion, e.g. $1/h^2$ /cm ⁻² or $1/h^2$ (1/cm ²) but not $1/h^2$ (cm ²).		[1] ic	
			nsiste value	ency: as of h and l must be given to the nearest mm only.		[1]	
		Eve	ery va	ant figures: alue of 1/ <i>h</i> ² must be given to the same s.f. as (or one e corresponding <i>h</i> .	e greater than) th	[1] e	
			lculat lues c	ion: of $(l-l_0)^2$ calculated correctly.		[1]	
	(d)	(i)	Scal grap Scal	s: sible scales must be used, no awkward scales (e.g. 3: es must be chosen so that the plotted points occup h grid in both <i>x</i> and <i>y</i> directions. es must be labelled with the quantity that is being plott e markings must be no more than 3 large squares apa	ed.	[1] e	
			Dian	ing: bservations in the table must be plotted. neter of plotted points must be ≤ half a small square (i k to an accuracy of half a small square.	no "blobs").	[1]	
				lity: points must be plotted (at least 5) for this mark to be ts must be within $\pm 10 \text{ cm}^2$ of $(l-l_0)^2$ from a straight line.		[1] of	
		(ii)	Judg Ther full le Allow the c	of best fit: ge by balance of all points about the candidate's line re must be an even distribution of points either side of ength. w one anomalous plot only if clearly indicated (i.e. circ candidate. must not be kinked or thicker than half a small square	f the line along th	e	

	Page 3		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – May/June 2014	9702	32
	 (iii) Gradient: The hypotenuse must be at least half the length of the drawn line. Both read-offs must be accurate to half a small square in both x and y directions. The method of calculation must be correct. 			[1] y	
		<i>y</i> -inte	ercept:		[1]
		be a Or:	er: d-off from a point on the line is substituted into <i>y</i> = <i>mx</i> ccurate to half a small square in both <i>x</i> and <i>y</i> direction ck read-off of the intercept directly from the graph.		st
			e of the gradient, and q = value of the intercept. onally correct units for p and q .		[1] [1]
					[Total: 20]
2	(a) (i)	Valu	the for <i>d</i> to nearest mm, in range 1.0 cm $\leq d \leq$ 2.0 cm.		[1]
2			-		
	(ii)	Corr	ect calculation of <i>l</i> .		[1]
			te for <i>t</i> in range 4.0s $\leq t \leq$ 10.0s, with unit. ence of repeat readings of <i>t</i> .		[1] [1]
	(c) (iii)	Valu	e for A to nearest mm, with unit.		[1]
	lf re rang	epeat ge (bi	uncertainty in A in range 2 to 5 mm. ed readings have been taken, then absolute uncer ut not zero) only if working shown. method of calculation to obtain percentage uncertainty.	-	[1] half the
	• •		value of <i>t.</i> value of <i>A</i> .		[1] [1]
			values of k calculated correctly. range 0.20 to $0.30 \mathrm{cm s^{-2}}$.		[1] [1]
	(ii)	Justi	ification based on the number of s.f. in <i>d</i> , <i>n</i> , <i>t</i> and A (no	ot just "raw readir	ngs"). [1]
	• •		d comment relating to the calculated values of <i>k</i> , te bified by the candidate.	sting against a	criterion [1]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9702	32

(g)	(i) Limitations (4 max)	(ii) Improvements (4 max)	Do not credit
A	Two readings are not enough to draw a valid conclusion	Take more readings (for different masses) <u>and</u> plot a graph, or take more readings <u>and</u> compare <i>k</i> values	Not enough repeat readings Few readings Idea of repeats "Too few readings/two readings" on its own
В	Difficult to measure <i>d</i> , with reason, e.g. parallax error/ measuring outside diameter/loop gets in the way	Use <u>vernier</u> calipers/micrometer Measure inside and outside diameter and find average	"Parallax error" on its own "Calipers" on its own
С	Difficult to judge exactly when 10 oscillations completed	Video + timer/video and view frame-by-frame. Use distance sensor in stated and correct position Use a (fiducial) marker at centre of oscillation/equilibrium position Light gate at equilibrium position/centre of oscillation	Human/reaction time error High speed cameras/slow motion cameras Oscillations too fast
D	Mass swings as it oscillates/non-uniform oscillation/spring moves along bolt	Use tube to act as a guide Use deeper groove on bolt Fix top of spring to bolt with, e.g. Blu-tack/Sellotape	
E	Difficult to judge when contact is lost/hard to see gap	Use pressure sensor on bolt Use video close-up/zoom lens/ magnifying glass Video + slow-motion, linked to observing gap Better/more sensitive method of adjusting height of bolt, e.g. lab jack	"Video + slow motion" on its own
F	<i>n</i> is not a whole number	Measure <i>n</i> to nearest ¼ turn	

Do not credit use of an assistant, fans, air conditioning, or use of computers/data loggers on its own.

[Total: 20]