MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Pa	Page 2		Mark Scheme	Syllabus	Paper	,
				GCE AS/A LEVEL – May/June 2013	9702	42	
				Section A			
1	(a)	sate per	ellite i iod is	al orbit / above equator moves from west to east / same direction as Earth spins 24 hours / same period as spinning of Earth mark for 'appears to be stationary/overhead' if none of a		B1 B1 B1 d)	[3]
	(b)	GΜ ω =	1 <i>m/R</i> ² 2π / 1	tonal force provides/is the centripetal force = $mR\omega^2$ or $GMm/R^2 = mv^2/R$ T or $v = 2\pi R / T$ or clear substitution rking to give $R^3 = (GMT^2 / 4\pi^2)$		B1 M1 M1 A1	[4]
	(c)	: R =	= 7.57 : 4.2 >	$7 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2 / 4\pi^2$ 7×10^{22} $\times 10^7$ m out 3600 gives 1.8×10^5 m and scores 2/3 marks)		C1 C1 A1	[3]
2	(a)	(i)		pV = nRT $1.80 \times 10^{-3} \times 2.60 \times 105 = n \times 8.31 \times 297$ n = 0.19 mol		C1 A1	[2]
				$\Delta q = mc\Delta T$ 95.0 = 0.190 × 12.5 × ΔT $\Delta T = 40$ K (allow 2 marks for correct answer with clear logic showr))	B1 A1	[2]
		(ii)	(2.6	= constant × 10 ⁵) / 297 = <i>p</i> / (297 + 40) 2.95 × 10 ⁵ Pa		M1 A0	[1]
	(b)	inte	ernal e	n internal energy is 120 J / 25 J energy decreases / ΔU is negative / kinetic energy of mo erature lower	lecules decreases	B1 M1 A1	[3]

	Page 3		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9702	42	
3	(a) (i)	= 9.1	/ T : / 0.69 1 rad s ⁻¹ use of $f = 1.5$ Hz to give $\omega = 9.4$ rad s ⁻¹)		C1 A1	[2]
	(ii)	2.2	= 2.1 cos 9.1 <i>t</i> 1 and 9.1 numerical values e of cos		B1 B1	[2]
			= $2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.) = 0.19 m s^{-1} = $v_0 \sin 9.1t$ (allow cos $9.1t$ if sin used in (ii)1.)		B1 B1	[2]
	(b) ene	= ei	ther $\frac{1}{2} m v_0^2$ or $\frac{1}{2} m \omega^2 x_0^2$ ther $\frac{1}{2} \times 0.078 \times 0.19^2$ or $\frac{1}{2} \times 0.078 \times 9.1^2 \times (2.1 \times 10^2)$ 4×10^{-3} J	⁻²) ²	C1 A1	[2]
4	(a) (i)	V = q /	$4\pi \varepsilon_0 R$		B1	[1]
	(ii)	•••	itance is) ratio of charge and potential or q/V / = $4\pi\epsilon_0 R$		M1 A0	[1]
	(b) (i)	C = 4π = 50	\times 8.85 \times 10 ⁻¹² \times 0.45 pF		C1 A1	[2]
	(ii)		energy = $\frac{1}{2} CV^2$ or energy = $\frac{1}{2} QV$ and $Q = CV$ of spark = $\frac{1}{2} \times 50 \times 10^{-12} \{(9.0 \times 10^5)^2 - (3.6 \times 10^5)^2\}$ = 17 J		C1 C1 A1	[3]
5			agnetic) flux normal to long (straight) wire carrying a c prce per unit length of 1 N m ⁻¹	current of 1 A	M1 A1	[2]
	(b) (i)	sketch	concentric circles increasing separation <i>(must show more than 3 circle</i> correct direction (anticlockwise, looking down)	s)	M1 A1 B1	[3]
	(ii)		$\pi \times 10^{-7} \times 6.3)$ / ($2\pi \times 4.5 \times 10^{-2}$) 3×10^{-5} T		C1 A1	[2]
	(iii)	F = BI = 2 8	$L (\sin \theta)$ 3 × 10 ⁻⁵ × 9.3 × 1		C1	
			$2.6 \times 10^{-4} \text{ N m}^{-1}$		A1	[2]
	rea	•	nit length depends on product $I_X I_Y$ / by Newton's third e equal and opposite r both	law / action and	M1 A1	[2]

	Page 4		L	Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – May/June 2013	9702	42	
6	(a)) e.m.f. <u>proportional to rate</u> e of (magnetic) flux (linkage)		M1 A1	[2]
	(b)	(i)	posi	tive terminal identified (upper connection to load)		B1	[1]
		(ii)	ratio (V _P = (<i>ratio</i>	$\sqrt{2} \times V_{\text{RMS}}$ = 240 $\sqrt{2}$ / 9 = 38 = V_{RMS} / $\sqrt{2}$ gives ratio = 18.9 and scores 1/3) p = 240 / 9 = 26.7 scores 1/3) p = 9 / (240 / $\sqrt{2}$) = 0.0265 is inverted ratio and scores 1/	3)	C1 C1 A1	[3]
	(c)	(i)	•	(output) p.d. / voltage / current does not fall to zero range of (output) p.d. / voltage / current is reduced (any	sensible answei	<i>r)</i> B1	[1]
		(ii)	sket	ch: same peak value at start of discharge correct shape between one peak and the next		M1 A1	[2]
7	(a)			velength is associated with a discrete <u>change</u> in energy energy <u>change</u> / difference implies discrete levels		M1 A1	[2]
	(b)	(i)	1.	arrow from –0.54 eV to –0.85 eV, labelled L		B1	[1]
				arrow from –0.54 eV to –3.4 eV , labelled S (two correct arrows, but only one label – allow 2 marks) (two correct arrows, but no labels – allow 1 mark)		B1	[1]
		(ii)		hc / λ - 0.54) × 1.6 × 10 ⁻¹⁹ = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / λ 4.35 × 10 ⁻⁷ m		C1 C1 A1	[3]
	(c)	-0. -0. 3 c	$85 \rightarrow 54 \rightarrow orrect$	-3.4 = 1.9 eV -3.4 = 2.55 eV (allow 2.6 eV) -3.4 = 2.86 eV (allow 2.9 eV) 7, 2 marks with -1 mark for each additional energy 7, 1 mark but no marks if any additional energy difference	98	B2	[2]

	Page 5	Mark Scheme	Syllabus	Paper	,
		GCE AS/A LEVEL – May/June 2013	9702	42	
8	either E	s given out / released on formation of the α -particle (or mc^2 so mass is less rence to mass-energy equivalence	reverse argume	nt) M1 A1	[2]
	(b) (i) mas	ss change = 18.00567 u – 18.00641 u = 7.4 × 10 ⁻⁴ u <i>(sign not required)</i>		C1 A1	[2]
	(allo	$rgy = c^{2} \Delta m$ = $(3.0 \times 10^{8})^{2} \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$ = 1.1×10^{-13} J ww use of u = 1.67×10^{-27} kg) ww method based on 1u equivalent to 930 MeV to 933 M	eV)	C1 A1	[2]
	(iii) eithe or	er mass of products greater than mass of reactants this mass/energy provided as kinetic energy of the he both nuclei positively charged energy required to overcome electrostatic repulsion	elium-4 nucleus	M1 A1 (M1) (A1)	[2]

	Page 6		j	Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9702	42	
				Section B			
9	(a)	30	litres	\rightarrow 54 litres (allow ± 4 litres on both limits)		A1	[1]
	(b)	(i)		0.1 V change in reading for 10 litre consumption <i>(or sin</i> ve about 60 litres gradient is small compared to the grad	,	B1) litres B1	[2]
		(ii)	voltr	neter reading (nearly) zero when fuel is left neter reads only about 0.1 V when 10 litres of fuel left in Itmeter reads zero when about 4 litres of fuel left in tank		C1 A1 s)	[2]
10	(a)			of density and speed of sound / wave of medium and) speed of sound / wave in medium		M1 A1	[2]
	(b)	if (Z	Z ₁ – Z	 (i) is small, mostly transmission (i) is large, mostly reflection (if 'mostly' not stated allow 1/2 marks for these first the set of the	vo marks)	M1 M1	
		eith or	ier	reflection / transmission also depends on $(Z_1 + Z_2)$ intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$		A1	[3]
	(c)	-		Iler structures can be distinguished better resolution at shorter wavelength / higher frequen	су	B1 B1	[2]
11	(a)			g voltage changes energy / speed of <u>electrons</u> g electron energy changes maximum X-ray photon energ	ЭУ	M1 A1	[2]
	(b)	(i)	1.	loss of power / energy / intensity		B1	[1]
				intensity changes when beam not parallel decreases when beam is divergent		C1 A1	[2]
		(ii)		$p = (\exp \{-2.9 \times 2.5\}) / (\exp \{-0.95 \times 6.0\})$ = 0.21 (min. 2 sig. fig.) wes of both lengths incorrect by factor of 10 ⁻² to give ration	o of 0.985 scor	C1 A1 es 1 mark,	[2])

	Page 7		age 7 Mark Scheme		Syllabus	Paper	,
				GCE AS/A LEVEL – May/June 2013	9702	42	
12	(a)			the simultaneous digits for one number ds' them one after another (along the transmission line)		B1 B1	[2]
	(b)	(i)	011	1		A1	[1]
		(ii)	0110)		A1	[1]

(c) levels shown

t	0	0.2	0.4	0.6	0.8	1.0	1.2
	0	8	7	15	6	5	8

(–1 for each error or omission)	A2	
correct basic shape of graph i.e. series of steps	M1	
with levels staying constant during correct time intervals (vertical lines in steps do not need to be shown)	A1	[4]

(d)	increasing number of bits reduces step height	M1	
	increasing sampling frequency reduces step depth / width	M1	
	reproduction of signal is more exact	A1	[3]