MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		ige 2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011 9702		43	
Sec	ctior	n A				
1	(a)	region (of space) where a particle / body experiences a force		B1	[1]
	(b)	similarit	y: e.g. force $\propto 1 / r^2$ potential $\propto 1 / r$		B1	[1]
		differen	ce: e.g. gravitation force (always) attractive electric force attractive or repulsive		B1 B1	[2]
	(c)	er l	ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1m_2G$ = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.6^{\circ}$ = 1.2×10^{36} $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	7 × 10 ⁻¹¹	C1 C1 A1	[3]
2	(a)		of substance ng same number of particles as in 0.012kg of carbon-12		M1 A1	[2]
	(b)	+ (2.3 × = 0.296 = 0.716	= $(2.3 \times 10^5 \times 3.1 \times 10^{-3}) / (8.31 \times 290)$ 10 ⁵ × 4.6 × 10 ⁻³) / (8.31 × 303) + 0.420		C1 C1 C1 A1	[4]
3	(a)	so no re	on plates are equal and opposite esultant charge stored because there is charge separation		M1 A1 B1	[3]
	(b)	(i) cap	pacitance = Q / V = $(18 \times 10^{-3}) / 10$		C1	[0]
		(ii)	= 1800 μ F e of area under graph or energy = $\frac{1}{2}CV^2$		A1	[2]
			$ergy = 2.5 \times 15.7 \times 10^{-3} \text{ or energy} = \frac{1}{2} \times 1800 \times 10^{-6} \times 10^{-6} \text{ or energy} = \frac{1}{2} \times 1800 \times 10^{-$	(10 ² – 7.5 ²)	C1 A1	[2]
	(c)	p.d. acro charge =	ed capacitance of Y & Z = $20 \mu\text{F}$ or total capacitance = 6 oss capacitor X = 8V or p.d. across combination = 12V = $10 \times 10^{-6} \times 8$ or $6.67 \times 10^{-6} \times 12$		C1 C1	
		=	= 80 µC		A1	[3]

	Page 3		5	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2011	9702	43	
4	(a)	 (a) +∆U: increase in internal energy +q: thermal energy / heat supplied to the system +w: work done on the system 			B1 B1 B1	[3]	
	(b)	(i)	per ı	rmal) energy required to change the state of a substan unit mass out any change of temperature	се	M1 A1 A1	[3]
		(ii)	grea grea	n evaporating ater change in separation of atoms/molecules ater change in volume tifies each difference correctly with ΔU and w		M1 M1 A1	[3]
5	(a)	(i)	•	uced) e.m.f. proportional to of change of (magnetic) flux (linkage) / rate of flux cutt	ing	M1 A1	[2]
		(ii)	2 . sp	noving magnet causes change of flux linkage beed of magnet varies so varying rate of change of flux nagnet changes direction of motion (so current changes		B1 B1 B1	[1] [1] [1]
	(b)			0.75s sy = 1.33Hz		C1 A1	[2]
	(c)	gra		mooth correctly shaped curve with peak at <i>f</i> ₀ I never zero		M1 A1	[2]
	(d)	(i)	reso	onance		B1	[1]
		(ii)	e.g.	quartz crystal for timing / production of ultrasound		A1	[1]
6	(a)	(i)		= 380 uency = 60 Hz		C1 A1	[2]
		(ii)		$\times \sqrt{2} = I_0$ = 9.9 / $\sqrt{2}$ = 7.0 A		C1	[0]
	/1 \					A1	[2]
	(D)	R =	ver = . : 400 : 8.2 <i>⊆</i>	/ 7.0 ²		C1 A1	101
		_	0.23	<u> </u>		A 1	[2]

	Ра	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	43	
7	(a)		elength of wave associated with a particle s moving		M1 A1	[2]
	(b)		energy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J energy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ momentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6×10^{-23} N s		M1 M1 A0	101
			$\lambda = h / p$ wavelength = (6.63 × 10 ⁻³⁴) / (1.6 × 10 ⁻²³)		C1	[2]
	(-)	1	$= 4.1 \times 10^{-11} \mathrm{m}$		A1	[2]
	(C)	electi incide fluore	am or description showing: ron beam in a vacuum ent on <u>thin</u> metal target / carbon <u>film</u> escent screen ern of concentric rings observed		B1 B1 B1 M1	
8	(a)	enerç	rn similar to diffraction pattern observed with visible light gy required to separate nucleons in a <u>nucleus</u>		A1 M1	[5]
		to inf			A1	[2]
	(b)	E = r = 1	$1.66 \times 10^{-27} \text{kg}$ mc ² $1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$ $1.49 \times 10^{-10} \text{ J}$		C1 M1	
			(1.49 × 10 ⁻¹⁰) / (1.6 × 10 ⁻¹³) 930 MeV		M1 A0	[3]
	(c)		$\Delta m = 2.0141u - (1.0073 + 1.0087)u$ = -1.9 × 10 ⁻³ u binding energy = 1.9 × 10 ⁻³ × 930		C1	
			=1.8 MeV		A1	[2]
		• •	∆ <i>m</i> = (57 × 1.0087u) + (40 × 1.0073u) – 97.0980u = (–)0.69 u binding energy per nucleon = (0.69 × 930) / 97		C1 C1	
			= 6.61 MeV		A1	[3]

	Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2011		43	
Sec	ction B				
9	•	e metal wire hown as a grid in plastic		B1 B1 B1	[3]
	(b) (i) gain	(of amplifier)		B1	[1]
	$V_1 =$	$V_{OUT} = 0$, then $V^+ = V^-$ or $V_1 = V_2$ (1000/1125) × 4.5 4.0 V		C1 C1 A1	[3]
	=	$(1000 / 1128) \times 4.5$ 3.99 V $f = 12 \times (3.99 - 4.00)$ = (-) 0.12 V		C1 A1	[2]
10	strong / large nuclei preces radio frequer at Larmor fre causes resor on relaxation pulse detecte non-uniform allows positio allows for loc (<i>six points, 1</i>	B1 B1 B1 B1 B1 B1	[8]		
11	e.g. canı banı e.g. cove rece	eliable communication ause ion layers vary in height / density not carry all information required dwidth too narrow erage limited eption poor in hilly areas sensible suggestions, M1 & A1 for each, max 4)	(M1) (A1) (M1) (A1) (M1) (A1)		[4]
		ust be amplified (greatly) before transmission back gnal would be swamped by <u>downlink</u> signal	to Earth	B1 B1	[2]

Page	6 Mark Scheme: Teachers' version		Syllabus	Pap	Paper	
		GCE AS/A LEVEL – May/June 2011	9702	43		
12 (a) (i)	24 =	$d / dB = 10 \log(P_1 / P_2)$ = $10 \log(P_1 / \{5.6 \times 10^{-19}\})$ = $1.4 \times 10^{-16} W$		C1 C1 A1	[3]	
(ii)	atter 1.9 = <i>L</i> = 1	nuation per unit length = 1 / <i>L</i> × 10 lg(<i>P</i> ₁ / <i>P</i> ₂) = 1 / <i>L</i> × 10 lg({3.5 × 10 ⁻³ }/{1.4 × 10 ⁻¹⁶ }) 1 km		C1 C1 A1	[3]	
	<i>or</i> atter	nuation = 10 lg({3.5 × 10 ⁻³ }/{5.6 × 10 ⁻¹⁹ }) = 158 dB	(C1)			
		nuation along fibre = (158 – 24) (158 – 24) / 1.9 = 71 km	(C1) (A1)			
(b) les	s atte	nuation (per unit length) / longer uninterrupted le	ength of fibre	B1	[1]	