UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		<u>'</u>	Mark Scheme: Teachers' version	Syllabus	Pape	r
				GCE AS/A LEVEL – May/June 2011 9702		41	
Se	ctior	ıΑ					
1	(a)	(i)		e proportional to product of masses e inversely proportional to square of separation		B1 B1	[2]
		(ii)	sepa	aration <u>much</u> greater than radius / diameter of Sun / pla	anet	B1	[1]
	(b)	(i)	_	force or field strength \propto 1 / r^2 ntial \propto 1 / r		B1	[1]
		(ii)		gravitational force (always) attractive tric force attractive or repulsive		B1 B1	[2]
2	(a)			of atoms of carbon-12 kg of carbon-12		M1 A1	[2]
	(b)	sub	stitut	T or <i>pV</i> = <i>nRT</i> es temperature as 298 K .1 × 10 ⁵ × 6.5 × 10 ⁻² = <i>N</i> × 1.38 × 10 ⁻²³ × 298		C1 C1	
		or	1	$.1 \times 10^5 \times 6.5 \times 10^{-2} = n \times 8.31 \times 298$ and $n = N / 6.02$ $< 10^{24}$	× 10 ²³	C1 A1	[4]
3	(a)	acceleration / force proportional to displacement from a fixed point acceleration / force (always) directed towards that fixed point / in opposite			M1		
		dire	ection		A1	[2]	
	(b)	(i)	nega	$/\ m$ is a constant and so acceleration proportional to x ative sign shows acceleration towards a fixed point $/\ m$ in		B1	
		(ii)		ction to displacement : (Aρg / m)		B1 C1	[2]
		(")	ω=			C1 C1	
			m =	, , , ,		A1	[4]
4	(a)			ne in bringing unit positive charge nity (to that point)		M1 A1	[2]
	(b)	(i)	field	strength is potential gradient		B1	[1]
		(ii)	pote	strength proportional to force (on particle Q) ential gradient proportional to gradient of (potential energies is proportional to the gradient of the graph	rgy) graph	B1 B1 A0	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2011	9702	41	
		pote 5.1	ential × 1.6	$5.1 \times 1.6 \times 10^{-19} (J)$ energy = $Q_1 Q_2 / 4\pi \varepsilon_0 r$ $\times 10^{-19} = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times r$ 10^{-10} m		C1 C1 C1 A1	[4]
	(d)	(i)		x is got out as x decreases pposite sign		M1 A1	[2]
		(ii)		gy would be doubled lient would be increased		B1 B1	[2]
5	` '	_	•	f space) where there is a force		M1	
		eith or		n / produced by magnetic pole n / produced by current carrying conductor / moving ch	narge	A1	[2]
	(b)	(i)		e on particle is (always) normal to velocity / direction of ed of particle is constant	travel	B1 B1	[2]
		(ii)	mv^2	netic force provides the centripetal force / r = Bqv nv / Bq		B1 M1 A0	[2]
	(c)	(i)	dire	ction from 'bottom to top' of diagram		B1	[1]
		(ii)		us proportional to momentum = 5.7 / 7.4		C1	
			= 0.7			A1	[2]
6	(a)	(i)	to co	oncentrate the (magnetic) flux / reduce flux losses		B1	[1]
		(ii)		nging flux (in core) induces current in core ents in core give rise to a heating effect		M1 A1	[2]
	(b)	(i)		f. induced proportional to of change of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	e.m.	netic flux in phase with / proportional to e.m.f. / current f. / p.d. across secondary proportional to rate of chang .m.f. of supply not in phase with p.d. across secondary	e of flux	M1 M1 A0	[2]
	(c)	(i)		ame power (transmission), high voltage with low curre low current, less energy losses in transmission cables		B1 B1	[2]
		(ii)	volta	age is easily / efficiently changed		B1	[1]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	41	
7	fo e	or a wa lectron	ve, electron can 'collect' energy continuously ve, electron will always be emitted / will be emitted at all frequencies		B1 M1 A1	[3]
	(b) (or or	wavelength is longer than threshold wavelength frequency is below the threshold frequency photon energy is less than work function		B1	[1]
	(I	(6.6	$f'\lambda = \phi + E_{MAX}$ $f'3 \times 10^{-34} \times 3.0 \times 10^{8}$) / (240 × 10 ⁻⁹) = ϕ + 4.44 × 10 ⁻¹⁹ $f'3.8 \times 10^{-19}$ J (allow 3.9 × 10 ⁻¹⁹ J)		C1 C1 A1	[3]
	(c) (oton energy larger (maximum) kinetic energy is larger		M1 A1	[2]
	(i		er photons (per unit time) (maximum) current is smaller		M1 A1	[2]
8	(a) (i) Fe	shown near peak		A1	[1]
	(i	i) Zrs	shown about half-way along plateau		A1	[1]
	(ii	i) Hs	hown at less than 0.4 of maximum height		A1	[1]
	(b) (•	avy / large nucleus breaks up / splits two nuclei / fragments of approximately equal mass		M1 A1	[2]
	(i	bine	ding energy of nucleus = $B_E \times A$ ding energy of parent nucleus is less than sum of binding ragments	g energies	B1 B1	[2]

Section	on E			
9 (a		o compare two potentials / voltages utput depends upon which is greater	M1 A1	[2]
(k	b) (resistance of thermistor = $2.5 \mathrm{k}\Omega$ resistance of X = $2.5 \mathrm{k}\Omega$	C1 A1	[2]
	(i	at 5 °C / at < 10 °C, $V^- > V^+$ so V_{OUT} is -9 V at 20 °C / at > 10 °C, $V^- < V^+$ and V_{OUT} is +9 V	M1 A1 B1	
		V _{OUT} switches between negative and positive at 10 °C (allow similar scheme if 20 °C treated first)	B1	[4]
10 (a	a) p	roduct of density (of medium) and speed of sound (in the medium)	B1	[1]
(k	•	would be nearly equal to 1 ither reflected intensity would be nearly equal to incident intensity	M1	
	o tr	r coefficient for transmitted intensity = $(1 - \alpha)$ ansmitted intensity would be small	M1 A1	[3]
(0	c) (a) $\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$ = 0.018	C1 A1	[2]
	(i	attenuation in fat = $\exp(-48 \times 2x \times 10^{-2})$ $0.012 = 0.018 \exp(-48 \times 2x \times 10^{-2})$ x = 0.42 cm	C1 C1 A1	[3]
11 (a	•	equency of carrier wave varies n synchrony) with the displacement of the information signal	M1 A1	[2]
(k	b) (5) 5.0 V	A1	[1]
	(i	6) 640 kHz	A1	[1]
	(ii	i) 560 kHz	A1	[1]
	(iv	7) 7000 (condone unit)	A1	[1]
12 (a	a) e	.g. acts as 'return' for the signal shields inner core from noise / interference / cross-talk (any two sensible answers, 1 each, max 2)	B2	[2]
(k	b) e	.g. greater bandwidth less attenuation (per unit length) less noise / interference (any two sensible answers, 1 each, max 2)	B2	[2]
(0	а	ttenuation is $2.4 dB$ ttenuation = $10 lg(P_1/P_2)$ atio = 1.7	C1 C1 A1	[3]

Mark Scheme: Teachers' version

GCE AS/A LEVEL – May/June 2011

Syllabus

9702

Paper

41

Page 5