UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9702	41

Section A

1	(a)	angle (subtended) <u>at centre</u> of circle (by) arc equal in length to radius					
	(b)	(i)	point S shown below C	B1	[1]		
		(ii)	(max) force / tension = weight + centripetal force centripetal force = $mr\omega^2$ 15 = 3.0/9.8 × 0.85 × ω^2 ω = 7.6 rad s ⁻¹	C1 C1 C1 A1	[4]		
2	(a)	(i)	27.2 + 273.15 or 27.2 + 273.2 300.4 K	C1 A1	[2]		
		(ii)	11.6 K	A1	[1]		
	(b)	(i)	($< c^2 >$ is the) mean / average square speed	B1	[1]		
		(ii)	$\rho = Nm/V$ with N explained so, $\rho V = 1/3 Nm < c^2 >$ and $\rho V = NkT$ with N explained so mean kinetic energy $N < N$ = N =	B1 B1 B1 B1	[4]		
	(c)	(i)	pV = nRT 2.1 × 10 ⁷ × 7.8 × 10 ⁻³ = $n \times 8.3 \times 290$ n = 68 mol	C1 A1	[2]		
		(ii)	mean kinetic energy = $3/2 kT$ = $3/2 \times 1.38 \times 10^{-23} \times 290$ = $6.0 \times 10^{-21} J$	C1 A1	[2]		
		(iii)	realisation that total internal energy is the total kinetic energy energy = $6.0 \times 10^{-21} \times 68 \times 6.02 \times 10^{23}$ = 2.46×10^5 J	C1 C1 A1	[3]		
3	(a)	(i)	to-and-fro / backward and forward motion (between two limits)	B1	[1]		
		(ii)	no energy loss or gain / no external force acting / constant energy / constant an	nplitud B1	de [1]		
	((iii)	acceleration directed towards a fixed point acceleration proportional to distance from the fixed point / displacement	B1 B1	[2]		
	(b)	acc so d	M1 A1	[2]			

	Page 3		Mark Scheme: Teachers' version		Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010	9702	41	
4	(a) ability to do work as a result of the position/shape, etc. of an object					B1 B1	[2]
	(b) (i)	1	$\Delta E_{ ext{gpe}}$	= GMm/r = $(6.67 \times 10^{-11} \times \{2 \times 1.66 \times 10^{-27}\}^2) / (3.8 \times 10^{-49})$ = 1.93×10^{-49} J	10 ⁻¹⁵)	C1 C1 A1	[3]
		2	$\Delta E_{ ext{epe}}$	= $Qq / 4\pi\epsilon_0 r$ = $(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2 / (4\pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-12})^2$ = $6.06 \times 10^{-14} J$) ⁻¹⁵)	C1 C1 A1	[3]
	(ii)	E_{K} =	= 3.03 ×	$_{\zeta} = \Delta E_{\text{epe}} - \Delta E_{\text{gpe}}$ 10 ⁻¹⁴ J		B1	
			3.03 × 10 .19 MeV	0^{-14}) / 1.6 × 10 ⁻¹³		M1 A0	[2]
	(iii)	fusio	on may o	occur / may break into sub-nuclear particles		B1	[1]
5	(a) (i)		er V _H m	on angle between (plane of) probe and <i>B</i> -field ax when plane and <i>B</i> -field are normal to each ero when plane and <i>B</i> -field are parallel		B1	
		or	V _H d€	epends on sine of angle between plane and <i>B</i> -	field	B1	[2]
	(ii)		to 1 s.f.	es $V_H r$ at least three times constant so valid or approx constant so valid of .f., not constant so invalid		M1 A1	[2]
		2	straight	line passes through origin		B1	[1]
	.,.,	rate cons	of chang stant fiel	ed is proportional / equal to ge of (magnetic) flux (linkage) d in <u>coil</u> / flux (linkage) of <u>coil</u> does not change rrent (in wire) / switch current on or off / use a.		M1 A1 B1	[3]
			te coil e coil <u>to</u>	wards / away from wire (1 mark each, max 3)		ВЗ	[3]
6		(a) all four diodes correct to give output, regardless of polarity connected for correct polarity				M1 A1	[2]
(b) $N_{\rm S} / N_{\rm P} = V_{\rm S} / V_{\rm rms}$ $V_0 = \sqrt{2} \times V_{\rm rms}$						C1 C1	
	rati			$(\sqrt{2} \times 240)$ or 1/37 or 0.027		A1	[3]

	•	GCE AS/A LEVEL – May/June 2010 9702	41			
7	(a) arro	ow pointing up the page				
	(b) (i)	Eq = Bqv $v = (12 \times 10^{3}) / (930 \times 10^{-6})$ $= 1.3 \times 10^{7} \text{ m s}^{-1}$	C1 C1 A1	[3]		
	(ii)	$Bqv = mv^2 / r$ $q/m = (1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ $= 1.8 \times 10^{11} \text{ C kg}^{-1}$	C1 C1 A1	[3]		
8		mentum conservation hence momenta of photons are equal (but opposite) ne momentum so same energy	M1 A1	[2]		
	(b) (i)	$(\Delta)E = (\Delta)mc^2$ = $1.2 \times 10^{-28} \times (3.0 \times 10^8)^2$ = $1.08 \times 10^{-11} \text{ J}$	C1 A1	[2]		
	(ii)	$E = hc / \lambda$ $\lambda = (6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (1.08 \times 10^{-11})$ $= 1.84 \times 10^{-14} \text{ m}$	C1 A1	[2]		
	(iii)	$\lambda = h/p$ $p = (6.63 \times 10^{-34}) / (1.84 \times 10^{-14})$ $= 3.6 \times 10^{-20} \text{ N s}$	C1 A1	[2]		
		Section B				
9	(a) (i)	point X shown correctly	B1	[1]		
	(ii)	op-amp has <u>very large</u> / infinite gain non-inverting input is at earth (potential) / earthed / at 0 V if amplifier is not to saturate, inverting input must be (almost)	M1 M1			
		at earth potential / 0 (V) same potential as inverting input	A1	[3]		
	(b) (i)	total input resistance = $1.2 \text{ k}\Omega$ (amplifier) gain (= $-4.2 \text{ / } 1.2$) = -3.5 (voltmeter) reading = -3.5×-1.5	C1 C1			
		= 5.25 V (total disregard of signs or incorrect sign in answer, max 2 marks)	A1	[3]		
	(ii)	(less bright so) resistance of LDR increases (amplifier) gain decreases (voltmeter) reading decreases	M1 M1 A1	[3]		

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9702	41	
10	(a)	repeated images / combine repeated to build u	ken of slice / plane / section d at different angles d data is processed d / added to give (2-D) image of slice d for successive slices up a 3-D image an be viewed from different angles / rotated		B1 B1 B1 B1 B1 B1 max 6	[6]
	(b)	(i) 16			A1	[1]
		(ii) evid to gi	ence of deducting 16 then dividing by 3 ive		C1 A1	[2]
11	(a)	•	cy of <u>carrier</u> wave <u>varies</u> (in synchrony) with signal nrony) with <u>displacement</u> of signal		M1 A1	[2]
	(b)	advantag (1 each, disadvar (1 each,	greater bandwidth / better quality max 2) ntages e.g. short range / more transmitters / line of sigl more complex circuitry greater expense	nt	В4	[4]
12	(a)	190 = 1 or -190	ss/dB = $10 \lg(P_1/P_2)$ $10 \lg(18 \times 10^3 / P_2)$ = $10 \lg P_2 / 18 \times 10^3$) = $1.8 \times 10^{-15} \text{ W}$		C1 C1 A1	[3]
	(b)	(i) 11 C	GHz / 12 GHz		В1	[1]
			so that input signal to satellite will not be 'swamped' void interference of uplink with / by downlink		B1	[1]