MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2	Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – May/June 2008	9702	04	
		Section A			
1		le (subtended) at centre of circle an arc equal in length to the radius (of the circle)		B1 B1	[2]
		le swept out per unit time / rate of change of angle he string		M1 A1	[2]
	0.72 W	provides / equals the centripetal force = $md\omega^2$ = $m \times 0.35\omega^2$		B1 C1	
	$\omega = 4.4$ n = (ω	$(rad s^{-1})$ $(2\pi) \times 60$ min ⁻¹ (allow 42)		C1 B1 A1	[5]
		<u>centripetal</u> force increases as <i>r</i> increases <u>centripetal</u> force larger at edge off at edge first w^2 so edge first – treat as special case and allow one m	nark)	M1 A1	[2]
2		e(s) rebound from wall of vessel / hits walls in momentum gives rise to impulse / force (many impulses) averaged to give constant force / pre the molecules are in random motion	ssure	B1 B1 B1	[3]
	(b) (i) p =	$\frac{1}{3}\rho < c^{2} >$ $2 \times 10^{5} = \frac{1}{3} \times 0.900 \times < c^{2} >$		C1	
	< <i>c</i> ²	$= 3.4 \times 10^{5}$ $= 580 \text{ m s}^{-1}$		C1 A1	[3]
		$er < c^2 > \infty$ T or $< c^2 > = 2 \times 3.4 \times 10^5$ s = 830 m s ⁻¹ (allow 820)		C1 A1	[2]
	(c) c _{RMS} dep so no ef	pends on temperature (alone) fect		B1 B1	[2]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9702	04	
3	(a)	(i)	amp	litude = 0.5 cm		A1	[1]
		(ii)	perio	od = 0.8 s		A1	[1]
	(b)	(i)		$2\pi / T$ 7.85 rad s ⁻¹		C1	
			corre	Provide S ect use of $v = \omega \sqrt{(x_0^2 - x^2)}$ $7.85 \times \sqrt{(\{0.5 \times 10^{-2}\}^2 - \{0.2 \times 10^{-2}\}^2)}$		B1	
			= (if ta 3.6 :	3.6 cm s ⁻¹ ngent drawn or clearly implied (B1) ± 0.3 cm s ⁻¹ (A2) allow 1 mark for > ± 0.3 but $\leq \pm 0.6$ cm s ⁻¹)		A1	[3]
		(ii)	d =	15.8 cm		A1	[1]
	(c)	(i)		tinuous) loss of energy / reduction in litude (from the oscillating system)		B1	
			caus	ed by force acting in opposite direction to the motion / ous forces	friction /	B1	[2]
		(ii)	line	e period / small increase in period displacement always less than that on Fig.3.2 <i>(ignore s</i> c <u>progressively</u> smaller	first T/4)	B1 M1 A1	[3]
4	(a)			ne moving unit positive charge nity to the point		M1 A1	[2]
	(b)	(i)	<i>x</i> =	18 cm		A1	[1]
		(ii)	(3.6 q =	$V_{\rm B} = 0$ × 10 ⁻⁹) / (4 $\pi \varepsilon_0$ × 18 × 10 ⁻²) + q / (4 $\pi \varepsilon_0$ × 12 × 10 ⁻²) = 0 -2.4 × 10 ⁻⁹ C of $V_A = V_B$ giving 2.4 × 10 ⁻⁹ C scores one mark))	C1 C1 A1	[3]
	(c)	forc	;e =	ngth = (–) gradient of graph charge × gradient / field strength or force ∞ gradient gest at x = 27 cm		B1 B1 B1	[3]
5	(a)) at $t = 1.0$ s, $V = 2.5$ V energy = $\frac{1}{2}CV^2$ $0.13 = \frac{1}{2} \times C \times (8.0^2 - 2.5^2)$ $C = 4500 \mu\text{F}$					[3]
	(b)			o capacitors in series in all branches of combination ed into correct parallel arrangement		M1 A1	[2]

Page		ge 4		Mark Scheme		Syllabus	Paper		
				GCE	E A/AS	LEVEL – May/June 2008	9702	04	
6	(a)	para	allel (to the field)				B1	[1]
	(b)	(i)	2.1 > F =	ue = F × d < 10 ⁻³ = F × 0.075 N of 4.5 cm so				C1 A1	[2]
		(ii)	zero					A1	[1]
	(c)	0.0	75 =	<i>N</i> (sinθ) <i>B</i> × 0.170 × × 10 ⁻² T =		0 ⁻² × 140		C1 M1 A0	[2]
	(d)	(i)	•	uced) <u>e.m.f.</u> i gnetic) flux (l		rtional to / equal to <u>rate of change</u>	of	M1 A1	[2]
		(ii)	char	nge in flux lin	=	 BAN 0.070 × 4.5 × 10⁻² × 2.8 × 10⁻² × 0.0123 Wb turns 	140	C1	
					0.0123 88 mV		ld involve the	C1 A1	[3]
7	(a)	cha		s quantised /		ding to a $\sqrt{2}$ factor) e quantities		B1	[1]
	(b)	(i)			t either or	ric field is uniform / constant oil drop will not drift sideways field is vertical		B1	101
					or	electric force is equal to weight		B1	[2]
		(ii)	$q \times 8$	= <i>mg</i> 350 / (5.4 × 1 4.8 × 10 ⁻¹⁹ ($7.7 \times 10^{-15} \times 9.8$ s negative		C1 C1 A1	[3]
	(c)	cha so d	rge c charg	hanges by 1 e on electror	.6 × 10⁻ ı is 1.6 >	¹⁹ C between droplets / integral m × 10 ^{−19} C	ultiples	M1 A0	[1]
8	(a)	since momentum before combining is zero momenta must be equal and opposite after <u>equal momenta so</u> photon energies equal					B1 B1 B1	[3]	
	(b)	b) $E = mc^2$ = 9.1 × 10 ⁻³¹ × (3.0 × 10 ⁸) ²						C1	
		=	= 8.1	9×10^{-14} (J)				C1	
				19 × 10 ⁻¹⁴) / (1 MeV	(1.6 × 10	0 ⁻¹³)		A1	[3]

Page 5	Mark Scheme	Syllabus	Paper					
	· · · · · ·	5762						
Section B								
(a) blocks la	 a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning 							
		ors)	M1 A1	[2]				
			M1 A0	[1]				
nuclei rotate	about direction of field / precess (1)		B1					
causes resor (pulse) is at t	hance in nuclei , nuclei absorb energy (1) he Larmor frequency (1)							
on relaxation / nuclei de-excite emit (pulse of) r.f. detected <u>and</u> processed non-uniform field (superimposed) allows for position of nuclei to be determined								
	3		B2	[8]				
			M1 A1	[2]				
2.	upper limit 530 kHz		B1 B1 B1	[1]				
		10 s ⁻¹	B1	[3]				
more	e complex electronics							
•	•		B2	[2]				
			M1 A1	[2]				
that	masks / added to / interferes with / distorts transmittee	l signal	B1 B1	[2]				
30 = 10	$\log(P / (6.5 \times 10^{-6}))$		C1					
loss alor	ig cable = $10lg({26 \times 10^{-3}} / {6.5 \times 10^{-3}})$ = 6.0 dB		C1 C1	[5]				
	(a) blocks la (b) (i) two corrections (ii) corrections (ii) corrections (iii) corrections (iii) corrections (iii) corrections (iii) corrections nuclei rotate radio frequer causes resor (pulse) is at to on relaxation detected and non-uniform allows for pot and for locati (B6 plus any (i) frequer in sy (ii) 1. 2. (b) e.g. more large (any two (a) (i) pick from (ii) rance that (allows (b) if P is pot 30 = 10 P = 6.5 loss alor	 GCE A/AS LEVEL – May/June 2008 Section B (a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditionin (b) (i) two LEDs with opposite polarities (ignore any series resist correctly identified as red and green (ii) correct polarity for diode to conduct identified hence red LED conducts when input (+)ve or vice versa large / strong (constant) magnetic field nuclei rotate about direction of field / precess (1) radio frequency / r.f. pulse causes resonance in nuclei , nuclei absorb energy (1) (pulse) is at the Larmor frequency (1) on relaxation / nuclei de-excite emit (pulse of) r.f. detected and processed non-uniform field (superimposed) allows for position of nuclei to be determined and for location of detection to be changed (1) (B6 plus any two extra details, 1 each, max 2) (a) (i) frequency of carrier wave varies in synchrony with displacement of information signal (ii) 1. zero (accept constant) 2. upper limit 530 KHz lower limit → upper limit at 8000 (b) e.g. more radio stations required / shorter range more complex electronics larger bandwidth required (any two sensible suggestions, 1 each) (a) (i) picking up of signal in one cable from a second (nearby) cable (ii) random (unwanted) signal / power that masks / added to / interferes with / distorts transmitted (allow this mark in (i) or (ii)) (b) if <i>P</i> is power at receiver, 30 = 101g((P / (6.5 × 10⁻³) / (6.5 × 10⁻³)) 	GCE A/AS LEVEL - May/June 2008 9702 Section B (a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning (b) (i) two LEDs with opposite polarities (ignore any series resistors) correctly identified as red and green (ii) correct polarity for diode to conduct identified hence red LED conducts when input (+)ve or vice versa large / strong (constant) magnetic field nuclei rotate about direction of field / precess (1) radio frequency / r.f. pulse causes resonance in nuclei , nuclei absorb energy (1) (pulse) is at the Larmor frequency (1) on relaxation / nuclei de-excite emit (pulse of) r.f. detected and processed non-uniform field (superimposed) allows for position of nuclei to be determined and for location of detection to be changed (1) (B6 plus any two extra details, 1 each, max 2) (a) (i) frequency of carrier wave varies in synchrony with displacement of information signal (ii) 1. zero (accept constant) 2. upper limit 530 kHz lower limit → upper limit at 8000 s ⁻¹ (b) e.g. more radio stations required / shorter range more complex electronics larger bandwidth required (any two sensible suggestions, 1 each) (a) (i) picking up of signal in one cable from a second (nearby) cable (ii) random (unwanted) signal / power that masks / added to / interferes with / distorts transmitted signal (allow this mark in (i) or (ii)) (b) if <i>P</i> is power at receiver, 30 = 10lg((<i>P</i> (.6.5 × 10 ⁻³)) P = 6.5 × 10 ⁻³ W loss along cable = 10lg(26 × 10 ⁻³ / {(.5.5 × 10 ⁻³)) = 6.0 dB	GCE A/AS LEVEL - May/June 2008 9702 04 Section B (a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning B1 (b) (i) two LEDs with opposite polarities (ignore any series resistors) correctly identified as red and green M1 (ii) correct polarity for diode to conduct identified hence red LED conducts when input (+)ve or vice versa M1 (iii) correct polarity for diode to conduct identified nuclei rotate about direction of field / process (1) B1 radio frequency / r.f. pulse B1 causes resonance in nuclei , nuclei absorb energy (1) B1 (pulse) is at the Larmor frequency (1) B1 (pulse) any two extra details, 1 each, max 2) B2 (a) (i) frequency of carrier wave varies in synchrony with displacement of information signal M1 (ii) 1. zero (accept constant) B1 2. upper limit 30 kHz B1 (a) (i) frequency of signal in one cable more complex electronics larger bandwidth required (any two sensible s				