MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page		2	Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9702	02	
1	(a)	allo	w an <u>y</u>	ything in range 20 Hz \rightarrow 20 kHz		B1	[1]
	(b)	allow anything in range 10 nm \rightarrow 400 nm			B1	[1]	
	(c)	allo	allow anything in range 10 g \rightarrow 100 g			B1	[1]
	(d)	allo	allow anything in range 0.1 kg m ⁻³ \rightarrow 10 kg m ⁻³				[1]
2	(a)	(i)	kist k =	the reciprocal of the gradient of the graph $(32 / (4 \times 10^{-2}) =) 800 \text{ N m}^{-1}$		C1 A1	[2]
		(ii)	or a ener	er energy = average force × extension or $\frac{1}{2}kx^2$ area under graph line rgy = $\frac{1}{2} \times 800 \times (3.5 \times 10^{-2})^2$ or $\frac{1}{2} \times 28 \times 3.5 \times 10^{-2}$ rgy = 0.49 J	2	C1 M1 A0	[2]
	(b)	(i)	0 =	nentum before cutting thread = momentum after $2400 \times V - 800 \times v$ V = 3.0		C1 M1 A0	[2]
		(ii)	0.49	rgy stored in spring = kinetic energy of trolleys $v = \frac{1}{2} \times 2.4 \times (\frac{1}{3}v)^2 + \frac{1}{2} \times 0.8 \times v^2$		C1 C1	
			-	0.96 m s^{-1} nly one trolley considered, or masses combined, allow	max 1 mark)	A1	[3]
3	(a)	(i)	1.2^{2}	= 2as = 2 × a × 1.9 0.38 m s ^{−2}		M1 A1	[2]
		(ii)		<i>ma</i> 42 × 0.38 16 N		M1 A0	[1]
	(b)) power :		<i>Fv</i> 16 × 1.2		C1	
				19 W		A1	[2]
	(c)	(i)	com	ponent = 42 × 9.8 × sin2.8 = 20.1 N		C1 A1	[2]
		(ii)	acce	elerating force = $20.1 - 16 = 4.1 \text{ N}$ eleration of trolley = $4.1 / 42 = 0.098 \text{ m s}^{-2}$ $\frac{1}{2}at^{2}$		C1 C1	
			3.5	$= \frac{1}{2} \times 0.098 \times t^2$ 8.5 s		C1 A1	[4]

	Pa	ge 3	Mark Scheme Syllabus	Paper	
	~		GCE A/AS LEVEL – May/June 2008 9702		
	(d) either or or (answer		allows plenty of time to stop runaway trolley speed of trolley increases gradually trolley will travel faster r must be unambiguous when read in conjunction with question)		[1]
4	(a)	3.	stress = force / (cross-sectional) area strain = extension / <u>original</u> length Young modulus = stress / strain atios must be clear in each answer)	B1 B1 B1	[1] [1] [1]
		(ii) ei or or		B1	[1]
	(b)	either	unless Δp is very large or 2.2 × 10 ⁹ is a large number ΔV is very small or $\Delta V/V$ is very small, (so 'incompressible')	M1 A1	[2]
	(c)	h = 9 $\Delta h / h$	$h^{5} = h \times 1.08 \times 10^{3} \times 9.81$ 0.53 m = 0.47 / 10 or 0.47 / 9.53	C1 C1	
		error	= 4.7% or 4.9% or 5%	A1	[3]
5	(a)	(i) fre	equency: number of oscillations <u>per</u> unit time of the source / of a point on the wave	M1 A1	[2]
		(ii) sp	peed: speed at which energy is transferred / speed of wave <u>front</u>	B1	[1]
	(b)	(i) do	pes not transfer energy (along the wave)	B1	[1]
		(ii) po	osition (along wave) where amplitude of vibration is a maximum	B1	[1]
		(iii) al	I three positions marked	B1	[1]
	(c)	v = f	ength = 2 × 17.8 = 35.6 cm ^f λ 125 × 0.356	C1 C1	
		= 4 44.5 ²	125×0.356 14.5 m s^{-1} = 4.00 / m $2.0 \times 10^{-3} \text{ kg m}^{-1}$	C1 C1 A1	[5]

	GCE A/AS LEVEL – May/June 2008 $P = VI$ and $V = IR$ or $P = V^2 / R$	9702	02	
	$P = VI$ and $V = IR$ or $P = V^2/R$			
	$e = 38.4 \Omega$		C1 A1	[2]
zero 1.5 kW 3.0 kW 0.75 kW 2.25 kW			B1 B1 B1 B1 B1	[5]
β-particle α speed α discret <i>either</i> or α positive α mass > (any two	or ${}^{4}_{2}$ He e: either electron or ${}^{0}_{-1}$ e < β speed e values of speed/energy, β continuous spectrum α ionising power >> β ionising power α range << β range e, β negative (only if first two B marks not scored) β mass (only if first two B marks not scored) sensible pairs of statements relevant to differences,	 (1) (1) (1) (1) (1) 	B1 B1 B2	[4]
(i) ²³⁶ U	$\rightarrow \begin{array}{c} {}^{232}_{90}\text{Th} \\ + \begin{array}{c} {}^{4}_{2}\text{He} \end{array}$		M1 A1	[2]
	1.5 kW 3.0 kW 0.75 kW 2.25 kW α -particle α speed α discrete <i>either</i> <i>or</i> α positive α mass > <i>(any two</i> <i>- do not</i>	1.5 kW 3.0 kW 0.75 kW 2.25 kW α -particle: <i>either</i> helium nucleus <i>or</i> contains 2 protons + 2 <i>or</i> $\frac{4}{2}$ He β -particle: <i>either</i> electron <i>or</i> $\frac{0}{-1}$ e α speed < β speed α discrete values of speed/energy, β continuous spectrum <i>either</i> α ionising power >> β ionising power <i>or</i> α range << β range α positive, β negative (<i>only if first two B marks not scored</i>) α mass > β mass (<i>only if first two B marks not scored</i>) (<i>any two sensible pairs of statements relevant to differences</i> , – <i>do not allow statements relevant to only</i> α <i>or</i> β , 1 each, max (i) $\frac{236}{92}$ U $\rightarrow \frac{232}{90}$ Th	1.5 kW 3.0 kW 0.75 kW 2.25 kW α -particle: <i>either</i> helium nucleus <i>or</i> contains 2 protons + 2 neutrons <i>or</i> $\frac{4}{2}$ He β -particle: <i>either</i> electron <i>or</i> $\frac{0}{-1}$ e α speed < β speed (1) α discrete values of speed/energy, β continuous spectrum (1) <i>either</i> α ionising power >> β ionising power <i>or</i> α range << β range (1) α positive, β negative (<i>only if first two B marks not scored</i>) (1) α mass > β mass (<i>only if first two B marks not scored</i>) (1) (<i>any two sensible pairs of statements relevant to differences</i> , <i>- do not allow statements relevant to only</i> α <i>or</i> β , 1 <i>each, max</i> 2) (i) $\frac{236}{92}$ U $\rightarrow \frac{232}{90}$ Th	1.5 kWB13.0 kWB10.75 kWB12.25 kWB1 α -particle: either helium nucleus or contains 2 protons + 2 neutrons or $\frac{4}{2}$ HeB1 β -particle: either electron or $_{-1}^{0}$ eB1 α speed < β speed(1) α discrete values of speed/energy, β continuous spectrum(1)either α ionising power >> β ionising power(1)or α range << β range(1) α mass > β mass (only if first two B marks not scored)(1) $(\alpha$ ny two sensible pairs of statements relevant to differences, $-$ do not allow statements relevant to only α or β , 1 each, max 2)B2(i) $\frac{236}{92}$ U $\rightarrow \frac{232}{90}$ ThM1

(ii) 1. correct position for U at Z = 92, N = 1452. correct position for Np relative to U i.e. Z + 1 and N - 1B1 [2]