MARK SCHEME for the May/June 2006 question paper

9702 PHYSICS

9702/06

Paper 6

Maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 1		Mark Scheme	Syllabus	Paper	
			GCE A – May/June 2006	9702	06	;
Op	tion	A - /	Astrophysics and Cosmology			
1	Plai	net:	almost circular orbits all in nearly the same plane		B1 B1	
	Cor	net:	highly elliptical orbits in many different planes		B1 B1	[4]
2	(a)	(me of n	an) density natter in the Universe		M1 A1	[2]
	(b)	(i)	symmetrical curve below given line touching given line at 'present time'		M1 A1	[2]
		(ii)	H_0 not known with any certainty mass of matter in the Universe not known extent of Universe unknown (allow 1 of the last 2 marks for ρ_0 not known)		B1 B1 B1	[3]
3	1 lig 1.3 <i>v</i> = spe	ght-y × 10 <i>H</i> ₀d ed =	ear = 0.306 pc (allow 0.3 pc) ¹⁰ light-years = 3.98×10^3 Mpc $60 \times 3.98 \times 10^3 = 2.39 \times 10^5$ km s ⁻¹		C1 C1 C1	
	ratio	D	= $(2.39 \times 10^5 \times 10^3)/(3.0 \times 10^8)$ = 0.8		A1	[4]
4	e.g. mor	e.g. vast expense money could be spent on humanitarian aid				
	observations possible that cannot be made on Earth since atmosphere limits observations					
	technological/scientific developments on Earth greater understanding of Universe leads to 'spin off' benefits for individuals					
	Any	/ ser	sible comments, 1 each to max 5	I	B5	[5]
Op	tion	F - 1	he Physics of Fluids			
5	(a)	con	servation of volume/mass/density or incompressible	I	B1	[1]
	(b)	cor	servation of energy	I	B1	[1]
6	(a)	air i higi	near jet is moving at speed ner speed air has a lower Source OR water in jet is moving at speed OR high-speed water has lower	ed pressure	B1 B1	
		(be	cause) air is dragged along by OR air is drawn into water jet	I	B1	
		air	outside pump) is not moving OR loss of air reduces pressure	I	B1	[4]
	(b)	(i)	air/water in pump has a higher speed so greater pressure difference	l	M1 A1	[2]

	Page 2		Mark Scheme	Syllabus	Ρ	aper
			GCE A – May/June 2006	9702		06
		(ii)	no change in speed of air so no change in pressure difference of R greater pressure difference of R greater pressure difference difference of R greater pressure difference difference difference of R greater pressure difference difference difference of R greater pressure difference dif	noulli eqn I	M1 A1	[2]
			(allow any logical argument based on liquid causing more/less o	drag on air)		
7	(a)	edd edd	y currents have kinetic energy OR cause extra drag	I	M1	
		mov	vement of the car OR energy required to overcome a energy (of eddy currents) is derived from car's fuel	drag d	A1 A1	[3]
	(b)	(i)	power = force × speed so power = $\frac{1}{2}C_{\rm D}A\rho v^2 \times v$ and <i>A</i> and <i>ρ</i> are constants	l	B1 B1	[2]
		(ii)	$84 \times 10^3 = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times v_{max}^{3}$ $v_{max} = 63 \text{ m s}^{-1}$		C1 A1	[2]
		(iii)	$P = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1 \times (63 + 9)^{3}$ P = 126 kW ratio = 126 / 84 = 1.5		C1 C1 A1	[3]
Op	otion	М-	Medical Physics			
8	(a)	alte app cau crys	rnating voltage lied across (piezo-electric) crystal ses crystal to vibrate stal dimensions such as to give resonance (in US range)		B1 B1 B1 B1	[4]
	(b)	wav so g	relength at 1 MHz is shorter greater detail is possible	l	B1 B1	[2]
9	e.g.	use furtl	d as a scalpel (1) ner detail: causes (explosive) vaporisation of intracellular water CO ₂ laser (1) IR radiation strongly absorbed by water (1) laser beam focused to give high power density (1) no/very little bleeding (1) accurate guidance (1)	(1)		
	e.g.	repa furtl	air of retina (1) ner detail: focused laser beam onto retina (1) melts tissue and forms a weld (1) (pulsed) ruby or argon laser (1)			
		any	two examples: named (1) plus further detail (2)	I	B6	[6]
	(allo	ow u	o to two marks for each diagnostic technique)			
10	(a)	min whe valu at 3	imum intensity (of sound) detected ere intensity = (sound) power per unit area at a stated frequency ie is 1×10^{-12} W m ⁻² kHz (allow 2 kHz \rightarrow 3 kHz)		M1 A1 B1 B1	[4]

	Page	93	М	ark Scheme	Syllabus	P	aper
			GCE A	– May/June 2006	9702		06
	(b)	(i)	intensity = $(0.14 \times 10^{-6})/(54)$ /L = 10 lg $(2.6 \times 10^{-3})/(1 \times 10^{-3})$ = 94 dB	4×10^{-6}) = 2.6 × 10 ⁻³ W m ⁻² 10 ⁻¹²)		C1 C1 A1	[3]
		(ii)	comment e.g. would be could cau could cau higher lev	perceived as being loud se tinnitus over a short period of time se deafness over a long period of time el than is acceptable in the workplace			
			any appropriate comment,	1 mark		B1	[1]
Op	otion	Ρ-	Environmental Physics				
11	(a)	at ti wat at ti wat	mes of low usage of electri er pumped from low-level t mes of high/sudden demar er released to pass through	cal power o high-level reservoir nd for electrical power n turbines		B1 B1 B1 B1	[4]
	(b)	eleo ene 1.5	trical energy generated = 10^{12} rgy to be stored = $(1.12 \times 10^{12})^{12} = \rho Vgh$ = $1.0 \times 10^3 \times V \times 9$	$78 \times 10^{6} \times 4.0 \times 3600 = 1.12 \times 10^{12} \text{ J}$ 10^{12})/0.75 = $1.5 \times 10^{12} \text{ J}$.8 × 95		C1 C1 C1	
		V =	$1.6 \times 10^6 \text{ m}^3$			A1	[4]
12	(a)	law (tha (Q _н	it is impossible to convert a t is) <i>W</i> < Q _H − <i>W</i>) is energy rejected at	all of a given amount of thermal energy t temperature <i>T</i> L	into work	B1 B1 B1	[3]
	(b)	W/C	$Q_{\rm H} = 1 - T_{\rm L}/T_{\rm H}$			B1	[1]
	(c)	effic	$\begin{array}{llllllllllllllllllllllllllllllllllll$			C1 A1	[2]
13	(a)	(i)	e.g. industry setting up people preparing to go to starting to cook breakfast	work			
			(allow any two sensible su	uggestions, 1 each)		B2	[2]
		(ii)	e.g. change in temperatur holiday or workday with m	e with use of heaters/air conditioning ore power used by industry when not	on holiday		
			(allow any two sensible su	uggestions, 1 each)		B2	[2]

Page 4		4	Mark Scheme		Pape	r
			GCE A – May/June 2006	9702	06	
	(b)	(i)	sudden increase in demand (as appliances are used)	E	31	
		(ii)	increased demand in the afternoon	E	31	[2]
		(alle	ow any two sensible suggestions in (i) and (ii))			
Ор	tion	т-	Telecommunications			
14	(a)	(ins dete	tantaneous) displacement of information signal ermines the frequency of the carrier wave	r A	W1 A1	[2]
	(b)	(i)	12 V	E	31	[1]
		(ii)	650 kHz	E	31	[1]
		(iii)	550 kHz	E	31	[1]
		(iv)	3000	E	31	[1]
15	(a)	ana	logue-to-digital converter (do not allow ADC)	E	31	[1]
	(b)	con	trols the time at which samples are taken	E	31	[1]
	(c)	ena	bles higher frequency components in signal to be 'detected'	E	31	[1]
16	(a)	eleo the	ctromagnetic shielding for the inner conductor braid is earthed	E	31 31	[2]
	(b)	incr so i few	eased bandwidth means more information can be carried nore calls can be transmitted simultaneously er links are required	E E	31 31 31	[3]
17	(a)	e.g. inte whi	.g. cross-talk/cross-linking iterference/picking up atmospherics/picking up man-made radiatio /hite noise associated with vibrating atoms			
		(an	y two, 1 each)	E	32	[2]
	(b)	(i)	number of dB = 10 lg (P_2/P_1) 35 = 10 lg $(P/{7.6 \times 10^{-6}})$ P = 0.024 W		C1 A1	[2]
		(ii)	number of dB = 10 lg (2.6/0.024) = 20.3 length = 20.3/5.8 = 3.5 km		C1 A1	[2]