June 2004

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02

PHYSICS Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	9702	02

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2			Mark Scheme	Syllabus	Paper	
			A/AS LEVEL EXAMINATIONS - JUNE 2004	9702	02	
1	(a)		scalar: magnitude only vector: magnitude and direction <i>(allow scalar with direction)</i> <i>(allow 1 mark for scalar has no direction, vector has direction</i>))	B1 B1	[2]
	(b)		diagram has correct shape with arrows in correct directions resultant = 13.2 ± 0.2 N (allow 2 sig. fig) (for $12.8 \rightarrow 13.0$ and $13.4 \rightarrow 13.6$, allow 1 mark) (calculated answer with a correct sketch, allow max 4 marks) (calculated answer with no sketch – no marks)		M1 A1 A2	[4]
~		<i>(</i>)		Total	54	[6]
2	(a)	(I) (II)	$\lambda = 0.6 \text{ m}$ frequency (= v/ λ) = 330/0.60 = 550 Hz (use of c = 3 x 10 ⁸ ms ⁻¹ scores no marks)		B1 C1 A1	[3]
	(b)		amplitude shown as greater than <i>a</i> but less than 2 <i>a</i> and cons correct phase (wave to be at least three half-periods, otherwise -1 overall)	tant	B1 B1	[2]
•	<i>.</i> .			Total	5.4	[5]
3	(a)	(i) (ii)	scatter of points (about the line) intercept (on t^2 axis)		В1 В1	[2]
			(note that answers must relate to the graph)			
	(b)	(i)	gradient = $\Delta y / \Delta x = (100 - 0)/(10.0 - 0.6)$ gradient = 10.6 (cm s ⁻²) (allow ±0.2)		C1 A1	[2]
			(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for 11 cm s ⁻²	2		
			i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks)			
		(11)	$s = ut + \frac{1}{2}at^2$		B1	
			so acceleration = 2 x gradient acceleration = 0.212 m s^{-2}		B1 B1	[3]
4	(a) (i	(i)	(p =) mv	Total	B1	[7]
	()	(ii)	$E_{\rm k} = \frac{1}{2} m v^2$		B1	
			algebra leading to $E_{k} = p^{2}/2m$		M1 A0	[3]
	(b)	(i)	$\Delta p = 0.035 (4.5 + 3.5)$ OR $a = (4.5 + 3.5)/0.14$		C1	
	()	(-)	$= 0.28 \text{ Ns} = 57.1 \text{ ms}^{-2}$	(allow a a f)	C1	
			= 2.0 N		A1	
			Note: candidate may add mg = 0.34 N to this answer, deduci upwards	t 1 mark	B1	[4]
		(ii)	loss = $\frac{1}{2} \times 0.035 (4.5^2 - 3.5^2)$		C1	
			= 0.14 J (No credit for 0.28 ² /(2 x 0.035) = 1.12 J)		A1	[2]
	(c)		e.g. plate (and Earth) gain momentum			
			<i>i.e. discusses a 'system'</i> equal and opposite to the change for the ball		B1	
			i.e. discusses force/momentum		M1	
			i.e. discusses consequence		A1	[3]
				Total		[12]

Page 3		3	Mark Scheme Sylla			Syllabus	ibus Pape	
			A/AS LEVEL EXAMINATIONS - JUNE 2004 970			9702	02	
5	(a)	(i)	distance = $2\pi nr$				B1	
Ū	()	(ii)	work done = $F \ge 2 \pi nr$ (accept e.c.	.f.)			B1	[2]
	(b)		total work done = $2 \times F \times 2\pi nr$ but torque $T = 2Fr$ hence work done = $T \times 2\pi n$				B1 B1 A0	[2]
	(c)		power = work done/time (= 470 x 2 = $1.2 \times 10^5 \text{ W}$	2π x 2400)/6	0)	Tatal	A1	[2]
6	(a)		When two (or more) waves meet (resultant <u>displacement</u> is the sum of individual (displacem	(not 'superpo nents)	ose' or 'interfere	i otai ;')	B1 M1 A1	[6] [3]
	(b)	(i) (ii)	any correct line through points of i any correct line through intersection	ine through points of intersection of crests ine through intersections of a crest and a trough				
	(c)	(i)	$\lambda = ax/D$ OR $\lambda = a\sin \theta and hand hand and hand hand hand hand and hand $	d $\theta = x/D$			C1 C1	[0]
		(ii) 1 2 3	a = 1.1 x 10 ° m no change brighter no change <i>(accept stay/remain da</i>	ark)		Tatal	B1 B1 B1 B1	[3]
7	(a)	(i)	P = VI			Iotai	C1	[11]
		(ii)	current = 60/240 = 0.25 A R (= V/I) = 240/0.25 = 960 Ω					
	(b)		$R = \rho L/A \text{ (wrong formula, 0/3)}$ 960 = (7.9 x 10 ⁻⁷ x L)/(π x {6.0 x 10 L = 0.137 m (use of A = 2 π r, then allow 1/3 ma	p L/A (wrong formula, 0/3) (7.9 x 10 ⁻⁷ x L)/(π x {6.0 x 10 ⁻⁶ } ²) .137 m of A = 2 π r, then allow 1/3 marks only for resistivity formula)				
	(c)	 e.g. the filament must be coiled/it is long for a lamp (allow any sensible comment based on candidate's answer for L) 						[1]
8	(a)		$V/E = R/R_{tot}$ 1.0/1.5 = $R/(R + 3900)$ $R = 7800\Omega$.	or or or	0.5 = / x 3900 1.0 = 0.5 <i>R</i> /390 <i>R</i> = 7800Ω	Total	C1 M1 A0	[7] [2]
	(b)		V = 1.5 x (7800/{7800 + 1250}) = 1.29 V	or or	/ = 1.5/(7800 + V = /R = 1.29 V	· 1250) V	C1 A1	[2]
	(c)		Combined resistance of R and vol reading at 0 °C is 0.75 V	Itmeter is 390	Ω 00		C1 A1	[2]
						Total		[6]