GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02
 PHYSICS
 Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	9702	02

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a Bmark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	9702	02

1 (a) scalar: magnitude only
vector: magnitude and direction (allow scalar with direction)
B1
(allow 1 mark for scalar has no direction, vector has direction)
(b) diagram has correct shape
with arrows in correct directions A1
resultant $=13.2 \pm 0.2 \mathrm{~N} \quad$ (allow 2 sig. fig)
A2
(for $12.8 \rightarrow 13.0$ and $13.4 \rightarrow 13.6$, allow 1 mark)
(calculated answer with a correct sketch, allow max 4 marks)
(calculated answer with no sketch - no marks)
2 (a) (i) $\lambda=0.6 \mathrm{~m}$
B1
(ii) frequency $(=v / \lambda)=330 / 0.60$
$=550 \mathrm{~Hz}$
A1
(use of $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$ scores no marks)
(b) amplitude shown as greater than a but less than 2a and constant
correct phase
(wave to be at least three half-periods, otherwise -1 overall)
3 (a) (i) scatter of points (about the line)
(ii) intercept (on t^{2} axis)
(note that answers must relate to the graph)
(b) \quad (i) \quad gradient $=\Delta y / \Delta x=(100-0) /(10.0-0.6)$
gradient $=10.6\left(\mathrm{~cm} \mathrm{~s}^{-2}\right) \quad($ allow $\pm 0.2)$
(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for $11 \mathrm{~cm} \mathrm{~s}^{-2}$
i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks)
(ii) $s=u t+\frac{1}{2} a t^{2}$

B1
so acceleration $=2 \times$ gradient
B1
acceleration $=0.212 \mathrm{~m} \mathrm{~s}^{-2}$
B1
[3]
Total
algebra leading to
$E_{\mathrm{k}}=p^{2} / 2 m$
(b) (i) $\quad \Delta p=0.035(4.5+3.5) \quad$ OR $\quad a=(4.5+3.5) / 0.14$

$$
=0.28 \mathrm{~N} \mathrm{~s} \quad=57.1 \mathrm{~m} \mathrm{~s}^{-2}
$$

force $=\Delta \mathrm{p} / \Delta \mathrm{t}(=0.28 / 0.14) \quad \mathrm{OR} \quad \mathrm{F}=\mathrm{ma}(=0.035 \times 575.1)$ (allow e.c.f.)

$$
=2.0 \mathrm{~N}
$$

C1
A1
Note: candidate may add $m g=0.34 N$ to this answer, deduct 1 mark upwards
(No credit for $\left.0.28^{2} /(2 \times 0.035)=1.12 \mathrm{~J}\right)$
(c)
e.g. plate (and Earth) gain momentum i.e. discusses a 'system'
equal and opposite to the change for the ball
i.e. discusses force/momentum
so momentum is conserved
i.e. discusses consequence

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2004	9702	02

5 (a)
(i) distance $=2 \pi n r$

B1
(ii) work done $=F \times 2 \pi n r$ (accept e.c.f.)

B1
(b) total work done $=2 \times F \times 2 \pi n r$

B1
but torque $T=2 F r$
B1
hence work done $=T \times 2 \pi n \quad$ A0
(c) power $=$ work done/time $(=470 \times 2 \pi \times 2400) / 60)$

$$
=1.2 \times 10^{5} \mathrm{~W}
$$

6 (a) When two (or more) waves meet (not 'superpose' or 'interfere') resultant displacement is the sum of individual (displacements)
(b) (i) any correct line through points of intersection of crests
(ii) any correct line through intersections of a crest and a trough
(c) (i) $\quad \lambda=a x / D \quad \mathrm{OR} \quad \lambda=a \sin \theta$ and $\theta=x / D$
$650 \times 10^{-9}=\left(a \times 0.70 \times 10^{-3}\right) / 1.2$
$a=1.1 \times 10^{-3} \mathrm{~m}$
C1
C1
(ii) 1 no change

A1
2 brighter B
3 no change (accept stay/remain dark)
Total
B1 [3]
(i) $P=V I$

C1
current $=60 / 240=0.25 \mathrm{~A}$
A1
(ii) $\quad R(=V / I)=240 / 0.25$
$=960 \Omega$
M1
A0
(b) $\quad R=\rho L / A$ (wrong formula, $0 / 3$)
$960=\left(7.9 \times 10^{-7} \times L\right) /\left(\pi \times\left\{6.0 \times 10^{-6}\right\}^{2}\right)$
$L=0.137 \mathrm{~m}$
(use of $A=2 \pi r$, then allow $1 / 3$ marks only for resistivity formula)
(c) e.g. the filament must be coiled/it is long for a lamp
(allow any sensible comment based on candidate's answer for L)
C1
C1
A1
[3]

B1
[1]
Total
[7]
C1
M1
A0
C1 A1
[2]
(c) Combined resistance of R and voltmeter is 3900Ω

C1
A1
Total
[6]

