MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2012	9701	21	
1	(a)	Zn0 not		$Zn(OH)_2$ ZnO r other compounds of Zn		(any 2)	[2]
	(b)	(i)		nsure all of the water of crystallisation had been driven c at constant mass	off or	(1)	
		(ii)	mas	s of ZnSO ₄ = 76.34 – 74.25 = 2.09 g		(1)	
			<i>M</i> _r Z	nSO ₄ = 65.4 + 32.1 + (4 × 16.0) = 161.5			
			allow	v use of Zn = 65 and/or S = 32 to give values between 1	61 and 161.5	(1)	
			<i>n</i> (Zn	SO_4) = $\frac{2.09}{161.5}$ = 0.01294 = 1.29 × 10 ⁻²			
			ZnS	O₄ = 161 gives 1.30 × 10 ^{−2}		(1)	
		(iii)	mas	s of H ₂ O driven off = 77.97 – 76.34 = 1.63 g		(1)	
			<i>n</i> (H ₂	$O) = \frac{1.63}{18} = 0.0905 = 9.1 \times 10^{-2}$		(1)	
		(iv)	1.29	\times 10 ⁻² mol ZnSO ₄ are combined with 9.1 \times 10 ⁻² mol H ₂	С		
			1 mc	ol ZnSO ₄ is combined with $\frac{9.1 \times 10^{-2}}{1.29 \times 10^{-2}}$			
			= 7.0	$054 \equiv 7 \mod H_2O$			
				ver must be expressed as a whole number v ecf on candidate's answers to (b)(ii) and (b)(iii)		(1)	[7]
	(c)	(i)	<i>n</i> (Zn) = n (CH ₃ CO ₂) ₂ Zn.2H ₂ O		(1)	
			<i>n</i> (Zn	$) = \frac{0.015}{65.4} = 2.290 \times 10^{-4}$			
			= 2.2	29 × 10 ⁻⁴		(1)	
				s of crystals = 2.29 × 10 ⁻⁴ × 219.4 = 0.0502655 g 05 g = 50 mg		(1)	
		(ii)	conc	centration of $(CH_3CO_2)_2Zn.2H_2O = \frac{2.29 \times 10^{-4}}{0.005} = 0.0458$			
			= 4.5	0.005 0.005 0.005 0.005		(1)	
			allov	v correct answers if Zn = 65 is used			[4]
						[Tota	l: 13]

	Ра	ge 3				k Scheme				labus	Paper	,
				GCE AS/A	LEVEL -	October/N	ovembe	er 2012	9	701	21	
2	(a)	(i)	theri	mal stability de	creases do	own Group V	VII				(1)	
		(ii)	the t H—2 sma	C <i>l</i> to I, atomic conding pair is X bond become ller orbital over ce H—X bond s	further from the s longer c lap occurs	m the nucle or					(1) (1)	[3]
	(b)	<i>K</i> c =	$= \frac{[H_2]}{[H_2]}$	$\frac{\mathrm{HI}^{2}}{\mathrm{]}\times\mathrm{[I_{2}]}}$								(1)
		no	units	– must be clea	rly stated						(1)	[2]
	(c)	(i)		hange							(1)	
				as no units or e no. of molecu	ules / mole	s each side	of equil	ibrium			(1)	
		(ii)	$K_{\rm c}$ in	librium moves t acreases with d	ecreasing		e or				(1)	
				ard reaction is rse reaction is							(1)	[4]
	(d)	equ	al mo iil. mo iil. coi			$H_{2}(g) \\ 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$	+	I ₂ (g) 0.02 (0.02 – y <u>(0.02 – y</u> 1		2HI(g) 0 2y <u>2y</u> 1	(1)	
		K _c =	$=\frac{H}{[H_2]}$	$\frac{\mathrm{HI}^2}{\mathrm{J} \times \mathrm{[I_2]}} = \frac{(2)}{(0.02)}$	$(y)^2 = 5$	9					(1)	
		(0.0	<u>2y</u>)2 – y	$\sqrt{59} = \sqrt{59} = 77$								
		2y :	= (7.7	′ × 0.02) – 7.7y								
		9.7	y = 0.	154								
		give	es y =	$\frac{0.154}{9.7} = 0.015$	59= 0.016						(1)	
		at e	quili	brium								
		n(⊔	II) – C	$2 \times 0.016 - 0.0^{\circ}$								

$n(\text{HI}) = 2 \times 0.016 = 0.032$ and n(HI) = n(I) = (0.02 - 0.016) = 0.004	(1)
$n(H_2) = n(I_2) = (0.02 - 0.016) = 0.004$	(1)
allow actwhere possible	r.

allow ecf where possible

[4]

	Pa	ge 4		Mark Scheme	Syllabus	Paper	,
			GCE	AS/A LEVEL – October/November 2012	9701	21	
3	(a)	(i)	$N_2(g) + 3H_2(g) N_2(g) + 3H_2(g)$) \Rightarrow 2NH ₃ (g) or) \rightarrow 2NH ₃ (g)			
			state symbols	required		(1)	
		(ii)	pressure	between 60 and 250 atm or between 60 × 10 ⁵ Pa and 250 × 10 ⁵ Pa		(1)	
			temperature	between 300 and 550 °C		(1)	
			catalyst	iron / iron oxide		(1)	
		(iii)		of HNO_3 / as a cleaning agent / refrigerant plosives / to remove SO_2 from combustion pro-			
	(b)	(i)	NH₄C <i>l</i> and Ca both formula			(1)	
		(ii)	2NH₄C <i>l</i> + Ca(NH₄ ⁺ + OH ⁻ –	$(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$ or $\rightarrow NH_3 + H_2O$			
			correct produce correctly bala	cts nced equation		(1) (1)	
		(iii)	CaO			(1)	
				id / it is basic / it does not react with NH_3 or $_4O_{10}$ and H_2SO_4 are acidic / react with NH_3		(1)	[5]
	((c)	H-N: H-N:	$+ H^{+} \longrightarrow \begin{bmatrix} H \\ H \\ H \\ H \end{bmatrix}^{+}$			

H		
correct displayed eqn. with positive charge cl lone pair on NH ₃ co-ordinate / dative bo	learly shown	(1) (1) (1) [3]

[Total: 13]

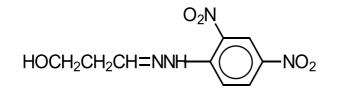
Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	21

4 (a) (i)

reaction	organic compound	reagent	structural formulae of organic products
А	(CH ₃) ₃ COH	Cr ₂ O ₇ ^{2–} /H ⁺ heat under reflux	no reaction
В	CH ₃ CH ₂ CHO	Fehling's reagent warm	CH₃CH₂CO₂H or CH₃CH₂CO2 [−]
С	HCO ₂ CH(CH ₃) ₂	NaOH(aq) warm	HCO₂Na or HCO₂ [−] (CH₃)₂CHOH
D	CH ₂ =CHCHO	NaBH ₄	CH ₂ =CHCH ₂ OH
Е	(CH₃)₃COH	NaBH ₄	no reaction
F	CH ₃ CH ₂ COCH ₃	MnO₄ [−] /H⁺ heat under reflux	no reaction

each correct answer gets (1)

(7 × 1)


(1 + 1 + 1) [10]

(ii)

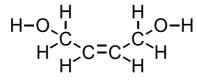
reaction	colour at the beginning of the reaction	colour at the end of the reaction
В	blue	brick red

each correct answer gets 1

(b) (i)

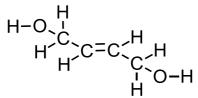
(1)

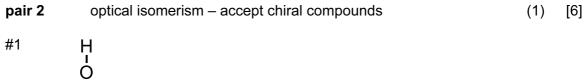
(1)

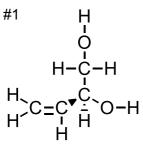

(ii) red or orange

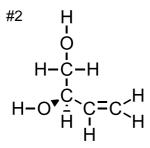
[Total: 12]

[2]


	Pa	ge 6		Mark Scheme	Syllabus	Paper	,
				GCE AS/A LEVEL – October/November 2012	9701	21	
5	(a)	(i)	carb	oxylic acid or alcohol present or oxylic acid and alcohol present acid or carboxyl or hydroxyl		(1)	
		(ii)		oxylic acid not present or alcohol present		(1)	
		(iii)	alke	ne or >C=C< present		(1)	[3]


(b) (i)




each correct structure gets (1) (4×1)

(ii) pair 1	geometrical or <i>cis-trans</i> or <i>E</i> / <i>Z</i> isomerism	(1)

[Total: 9]