MARK SCHEME for the October/November 2008 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2		ge 2	2 Mark Scheme Sy	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2008	9701	2
1	(a)	(i)	substance that speeds up a chemical reaction (1) by lowering E_a or by providing an alternative reaction pathway or without being used up in the process (1)		
		(ii)	$2H_2O_2 \rightarrow 2H_2O + O_2(1)$		[3]
	(b)	(i)	alkanes or paraffins (1)		
		(ii)	$2H_2O_2$: O_2 and $C_{15}H_{32}$: $23O_2$ (1) whence $C_{15}H_{32}$: $46H_2O_2$ (1) allow e.c.f. on (a)(ii)		[3]
	(c)	(i)	$C_{15}H_{32} = 212 (1)$ n(C ₁₅ H ₃₂) = $\frac{212 \times 10^6}{212}$ = 1 × 10 ⁶ mol allow e.c.f. on wrong <i>M</i> _r of C ₁₅ H ₃₂ (1)		
		(ii)	$n(H_2O_2)$ required = 46×10^6 mol (1) mass of H_2O_2 = $34 \times 46 \times 10^6$ g = 1564 tonnes final answer must be in tonnes (1) allow e.c.f. on (b)(ii) and (c)(i)		[4]
	(d)	the	ey would dissolve (1)		[1] [Total: 11]
2	(a)	(i)	H–C–H 117 to 120° (1) C=C=O 180° (1)		
		(ii)	molecule contains both ketone and alkene (1)		[3]
	(b)	(i)	$C_2H_2O + 2O_2 \rightarrow 2CO_2 + H_2O(1)$		
		(ii)	whence 3.5 g C ₂ H ₂ O $\rightarrow \frac{48 \times 3.5}{42}$ dm ³ of CO ₂ (7 = 4.0 dm ³ of CO ₂ (1) or $n(C_2H_2O) = \frac{42}{3.5} = 0.0833$ (1) $n(CO_2) = 2 \times 0.083 = 0.0166$ (1) vol. of CO ₂ = 0.0166 × 24 = 4.0 dm ³ (1)	1)	
			allow e.c.f. on wrong eqn. in (b)(i) penalise significant figure error		[4]

Page 3			Syllabus	Paper
		GCE A/AS LEVEL – October/November 2008	9701	2
		enthalpy change when 1 mol of a compound is formed (1) from its elements (1) in their standard states under standard conditions (1) C + O ₂ \rightarrow CO ₂ -395 kJ mol ⁻¹ H ₂ + $\frac{1}{2}O_2 \rightarrow$ H ₂ O -286 kJ mol ⁻¹		
		$\begin{array}{rcl} C_2H_2O &+& 2O_2 &\to& 2CO_2 &+& H_2O &-1028 \text{ kJ mol}^{-1} \\ 2C &+& H_2 &+& 1_2O_2 &\to& C_2H_2O \ \Delta H &=& 2(-395) \ +& (-286) \ -(-286) \ $	–1028)	[6
(d)	H₂C	D/water/steam (1)		[,
				[Total: 14
(a)		bde $Cl^{-}(aq) \rightarrow \frac{1}{2}Cl_{2}(g) + e^{-}(1)$ hode $H^{+}(aq) + e^{-} \rightarrow \frac{1}{2}H_{2}(g)$ $2H_{2}O(I) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)(1)$		
	-	rect state symbols (1)		[
(b)	bec	cause the iron in steel will react with chlorine (1)		[
(c)	(i)	sodium hydroxide/NaOH (1) $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ or $2H^+ + 2e^- \rightarrow H_2$ (1) leaving OH^- in solution as NaOH (1)		[
(d)	Na	burns with a yellow flame/forms a white solid (1)		
(u)	P	2Na + $Cl_2 \rightarrow 2NaCl(1)$ burns with a white flame/forms a colourless liquid (PC l_3) c P + $1\frac{1}{2}Cl_2 \rightarrow PCl_3$ or P ₄ + $6Cl_2 \rightarrow 4PCl_3$	o r a white solid (F	PC <i>l</i> ₅) (1)
		or P + $2\frac{1}{2}Cl_2 \rightarrow PCl_5$ or P ₄ + $10Cl_2 \rightarrow 4PCl_5(1)$		[
(e)	SiC Mg SiC	Cl_2 6 to 7 (1) Cl_4 0 to 3 (1) Cl_2 dissolves without reaction (1) Cl_4 reacts with water/hydrolyses (1) $Cl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ or		
		$Cl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$ or		
	0:0	$Cl_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl(1)$		[

[Total: 15 max]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	2

4

organic reaction	type of reaction		reagent(s)	
CH₃CHO →	nucleophilic	(1)	HCN	
CH₃CH(OH)CN	addition	(1)	or HCN and CN⁻	(1)
$CH_3CH_2CH_2CH_3 \rightarrow$	free radical	(1)	Br ₂	
CH ₃ CH ₂ CHBrCH ₃	H ₃ substitution	(1)	or Br ₂ in an organic solvent	
			not Br ₂ (aq)	(1)
$CH_3CH(OH)CH_3 \rightarrow$	elimination	(1)	conc. H ₂ SO ₄	(1)
CH ₃ CH=CH ₂				
$CH_3CH=CH_2 \rightarrow$	addition		KMnO₄/MnO₄ [−]	(1)
CH₃CH(OH)CH₂OH	or oxidation	(1)		

[10]

[Total: 10]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	2

[1]

5 (a) C₄H₈O₂ (1)

(b)

HCO ₂ CH(CH ₃) ₂	HCO ₂ CH ₂ CH ₂ CH ₃	$\begin{array}{c} CH_3CO_2CH_2CH_3\\ \textbf{or}\\ CH_3CO_2C_2H_5 \end{array}$	$\begin{array}{c} CH_3CH_2CO_2CH_3\\ \textbf{or}\\ C_2H_5CO_2CH_3 \end{array}$
w	x	Y	Z

	each correct structure is worth (1)		
(c)	(i)	presence of >C=O group/carbonyl group (1)	
	(ii)	–CHO group/aldehyde group is absent or ketone is present (1)	
	(iii)	alcohol C is (CH ₃) ₂ CHOH allow e.c.f. on (c)(i) and (ii) (1)	
	(iv)	correct identification of candidate's ester (W in this case)	
		allow e.c.f. on (c)(iii) (1)	[4]
(d)	none no chiral centres are present in any of the four esters allow e.c.f. on candidate's compounds in (a) (1)		[1]
		[Total:	10]