MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

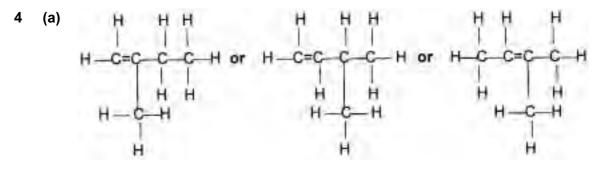
• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2	2	Mark Scheme	Syllabus	Paper	r
			GCE A/AS LEVEL – October/November 2007	9701	02	
1	(a)	1				
			1s 2s			
		spl	herical (1) larger spherical (1)			
		5	Zp.			
	dou	ıble lob	bes along the <i>x</i> -axis (1)			[3]
	dot					[0]
	(b) (i)	attrac	tion between bonding electrons and nuclei		(1)	
		attrac	tion is electrostatic		(1)	
	(ii)	H_2	s-s overlap clearly shown			
			must not be normal dot/cross diagram		(1)	
		HC1	s-p overlap clearly shown			
			overlap must involve s and p orbitals		(1)	[4]
	(c) (i)	bondii	ng electrons are unequally shared or			
		the m	olecule has a dipole/ δ + and δ - ends to molecule		(1)	
	(ii)	the H	and Cl atoms have different electronegativities			
		or chl	orine is more electronegative than hydrogen		(1)	[2]

Pa	ge 3	Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9701	02	
(d)	H	Н			
		c c			
	н⊏	Н			
	allow tw	o 'sausages' above and below the C-C axis			
	-	orbitals overlapping sideways one (localised) π bond over two carbon atoms		(1)	[1]
(e)	$\Delta H_{f}^{e} = 2$	(–393.7) + 2(–285.9) – (–1411)			
	= + 51.8	kJ mol ⁻¹ (units given in qu.)		(3)	
	penalise	errors: no 2 for –393.7 no 2 for –285.9			
		wrong sign for –(–1411)			[3]
				[Total:	: 13]
2 (a)	P ₄ (s) + 2	$loc l_2(g) \rightarrow 4PC l_5(s)$			
	or 2P(s) + 5C $l_2(g) \rightarrow 2PCl_5(s)$			
	equatior	1		(1)	
	state sy	nbols		(1)	[2]
(b)	(i) giar	nt ionic lattice (may be in diag.)		(1)	
	stro	ng ionic bonds		(1)	
	(ii) sim	ple molecular or discrete molecules			
	(ma	y be shown in a diagram)		(1)	
	with	weak intermolecular forces or			
	wea	ik van der Waals' forces			
	betv	veen them		(1)	[4]
(c)	SiC <i>l</i> ₄ + 2	$2H_2O \rightarrow SiO_2 + 4HCl$			
	or SiCl ₄	+ $4H_2O \rightarrow Si(OH)_4 + 4HCl$			
	or SiCl ₄	+ $4H_2O \rightarrow SiO_2.2H_2O + 4HCl$		(1)	[1]


	Page 4				Syllabus	Paper		
				GC	CE A/AS LEVEL – October/November 2007	9701	02	
	(d)	Na	C <i>l</i> pH is 7 allow neutral			(1)		
		PC	l_5 pH is between 1 and 4					
		do	not al	llow a	acidic		(1)	[2]
	(e)	(i)	460 k	K	Al_2Cl_6		(1)	
			1150	K	AlCl ₃		(1)	
		(ii)	corre	ect do	t-and-cross diagram for AlCl ₃		(1)	
		(iii)	corre	ect dis	played structure for Al ₂ Cl ₆		(1)	
			two c	correc	t co-ordinate bonds		(1)	
			CI CI	A				[5]
						[Tot	al: 14]	
3	(a)	P_4					(1)	
		S ₈					(1)	
		Cl ₂					(1)	[3]
	(b)	(i)	highe	est S ₈	P ₄ C <i>l</i> ₂ lowest			
			allow	/ S	P C <i>l</i> or names		(1)	
		(ii)	from	S ₈ to	P_4 to Cl_2			
			there	e are f	ewer electrons in each molecule		(1)	
			henc	e wea	aker van der Waals' forces		(1)	[3]

Page 5		Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9701	02	
(c) (i)	S ₂ Cl	$f_2 = (2 \times 32.1) + (2 \times 35.5) = 135.2$			
	n(S ₂	Cl_2) = $\frac{2.7}{135.2}$ = 0.0199 = 0.02		(1)	
	0.02	mol S ₂ C $l_2 \rightarrow \frac{0.96}{32.1}$ = 0.03 mol S			
	1.0 r	nol S ₂ C $l_2 \rightarrow \frac{0.03 \times 1.0}{0.02}$ = 1.5 mol S		(1)	
(iii)	2S ₂ C	$Cl_2 + 3H_2O \rightarrow 3S + H_2SO_3 + 4HCl_2$			
	corre	ect products		(1)	
	bala	nced equation		(1)	[4]
(d) oxid	ation	product is H_2SO_3		(1)	
redu	uctior	product is S		(1)	[2]

(1)

[1]

H atoms must be shown.

Structure must not contain any CH_3 groups

(b) $H_{3}C = C_{1}C_{2}H_{6}$ $H_{3}C = C_{2}H_{5}$ cistrans(1) [2] (c) $CH_{3}CH(OH)CH_{2}CH_{2}CH_{3}$ (1)

	Ра	ge 6	Mark Scheme Syllabu	is P	aper
			GCE A/AS LEVEL – October/November 2007 9701		02
	(d)		CH _a correct compound	(1)	
		н	Correct mirror object/mirror image relationship in 3D	(1)	[2]
	(e)	5	e.g. cyclopentane structure		
		allo	w methylcyclobutane or dimethylcyclopropane	(1)	[1]
	(f)	e.g			
		0-0-1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
			repeat units must be shown tive positions of $-CH_3$ and $-C_2H_5$ may differ from those shown above	(1)	[1]
				I	[Total: 9]
5	(a)	(i)	$Cr_2O_7^{2-}/H^+$ allow MnO_4^-/H^+	(1)	
		(ii)	from orange to or purple to colourless		
			green or green/blue	(1)	[2]
	(b)	(i)	to ensure complete oxidation of –CH ₂ OH		
			or to keep reactants in the reaction flask	(1)	
		(ii)	CH₃CHO/ethanal	(1)	[2]
	(c)	(i)	CH ₃ I/iodomethane	(1)	
		(ii)	nucleophilic substitution or hydrolysis	(1)	[2]

Page 7	Mark Scheme	Syllabus	Pape	
	GCE A/AS LEVEL – October/November 2007	9701	02	
(d) step l				
red P + I	I_2 or HI(aq) or KBr/conc H ₃ PO ₄ or PI ₃		(1)	
heat but	room temperature for PI_3		(1)	
step II				
KCN in a	aqueous ethanol		(1)	
in aqueo	us ethanol, heat under reflux		(1)	
allow aq	ueous ethanol in either place			
step III				
aqueous	mineral acid (not nitric acid)			
or NaOH	I(aq) then aqueous mineral acid		(1)	
heat			(1)	[6
			[Tota	al: 12