MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/23

Paper 2 (Structured Question AS Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

|--|

Mark Scheme	Syllabus	Paper
Cambridge International AS/A Level – May/June 2015	9701	23

Qı	uesti	on	Mark Scheme	Mark	Total
1	(a)		(1s ²)2s ² 2p ⁶	[1]	[1]
	(b)	(i)	The amount of energy required/energy change when one electron is removed	[1]	
			from each atom in one mol of gaseous atoms	[1] [1]	[3]
		(ii)	Greater nuclear charge/number of protons Same shielding/number of shells/energy level	[1] [1]	[2]
	(c)	(i)	mean/average mass of the isotope <u>s</u> /an atom(s) relative to 1/12 of the mass of an atom of ¹² C/on a scale where an atom of ¹² C is (exactly) 12	[1] [1]	[2]
		(ii)	$20.2 = \frac{(20 \times 90.48) + (21 \times 0.27) + (9.25y)}{100}$	[1]	
			$\frac{2020 - 1815.27}{9.25} = 22.133$		
			y = 22	[1]	[2]
	(d)	(i)	$pV = \frac{mRT}{M_r}$		
			$M_{r} = \frac{mRT}{pV} = \frac{0.275 \times 8.31 \times 298}{100 \times 10^{3} \times 200 \times 10^{-6}}$	[1]	
			M _r = 34.05/34.1	[1]	[2]
		(ii)	(Let % Ne = x so % Ar = 100-x)		
			$\frac{20.2x + 39.9(100 - x)}{400} = 34.05$		
			100 % Ne = 29.7	[1]	[1]
1	(e)	(i)	Van der Waal's/London/dispersion Uneven electron distribution/temporary dipole Induced dipole-dipole attraction	[1] [1] [1]	[3]
		(ii)	more electrons more polarisable/greater attraction/stronger IMFs	[1] [1]	[2]
					[18]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9701	23

Question	Mark Scheme	Mark	Total
2 (a) (Reactivity increases down the group OR reference to observations that indicate trend 	[1]	
	Outer electrons lost more easily down group Due to increased distance/shielding of outer electrons from nucleus	[1] [1]	[3]
(i) Mg + 2H ₂ O \rightarrow Mg(OH) ₂ + H ₂	[1]	[1]
(i	i) Magnesium hydroxide sparingly soluble/insoluble	[1]	[1]
(i	Mg + H ₂ O \rightarrow MgO + H ₂	[1]	[1]
(b) (i) MgO + 2HNO ₃ \rightarrow Mg(NO ₃) ₂ + H ₂ O	[1]	[1]
(1	i) (thermal stability) increases down the group	[1]	[1]
(i	i) $2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$	[1]	[1]
(i [,]	 N from (+)5 to (+)3 O from -2 to 0 N is reduced and O is oxidised 	[1] [1] [1]	[3]
(c)	(Very) strong electrostatic attraction/ionic bond High charge (density) of cation and anion/Mg ²⁺ and O ²⁻	[1] [1]	[2]
(d) (i) $CaCO_3 \rightarrow CaO + CO_2$ $CaO + H_2O \rightarrow Ca(OH)_2$	[1] [1]	[2]
(i) $2H^+ + CO_3^{2-} \rightarrow CO_2 + H_2O$	[1]	[1]
(i	i) $1 \times 10^{-4} \times 8000 = 0.8 \text{ mol H}^+$	[1]	
	$\frac{0.8}{2} \times 100.1 = \text{mass CaCO}_3 = 40 \text{ g}$	[1]	[2]
			[19]
3 (a) (i) A/B =	[1]	
		[1]	
	C =O		
		[1]	[3]
(i	i) Chain	[1]	[1]
(i	i) Silver mirror/ppt/solid (black/grey)	[1]	[1]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9701	23

Questi	on	Ма	rk Scheme	Ma	ark	Total
(b)	(i)	D CH ₂ =C(CH ₃)CH ₂ OH		[1]	
		E H ₃ C H	Е H ₃ CCH ₂ OH	[1:	+1]	
		с=с′ н Сн ₂ он	с=с́н н		1] 1]	
		trans OR E	cis OR Z		.1	
		H ₂ C=CHCH ₂ CH ₂ OH				[5]
	(ii)	Hydrogen		[1]	[1]
(c)	(i)	$C_3H_6O + [O] \rightarrow C_3H_6O_2$		[1]	[1]
	(ii)	C_3H_6O +2[H] → C_3H_8O		[1]	[1]
						[13]
4 (a)	(i)	Н ₃ С СН ₂ ОН H ₃ С—С—С—СН ₃ НО ОН		[1]	[1]
	(ii)	$H_3C - C = O$		[1]	
		н ₃ с—с=о о=с́ссон сн ₃		[1]	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9701	23

Question	Mark Scheme	Mark	Total
(b) (i)	$H_{3}C \xrightarrow{-C} C_{+}CH_{3} \xrightarrow{-C} C_{+}CH_{3} \xrightarrow{-C} C_{-}C_{+}CH_{3}$ $H_{3}C \xrightarrow{-C} C_{+}CH_{3} \xrightarrow{-C} C_{-}CH_{3}$ $H_{3}C \xrightarrow{-C} C_{+}CH_{3} \xrightarrow{-C} H_{3}C_{+}CH_{3}$ $H_{3}C \xrightarrow{-C} C_{+}CH_{3}$ $H_{3}C $	[1]	
	M3 = Br with –ve charge, lone pair and curly arrow to C+	[1]	[3]
(ii)	dipole is <u>induced</u> by proximity to C=C	[1]	[1]
(iii)	Optical	[1]	[1]
(iv)	$\begin{array}{ccc} H_2COH & H_2COH \\ Br & C \\ H_3C & CH_3 \\ H_3C & CH_3 \\ \end{array} \begin{array}{c} H_3C & C \\ H_3C \\ H_3C \end{array} \begin{array}{c} C \\ H_3C \\ H_3C \\ H_3C \end{array} \begin{array}{c} Br \\ H_3C \\ H_3C \\ H_3C \\ \end{array}$	[1+1]	[2]
			[10]