MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/34

Paper 34 (Advanced Practical Skills 2), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	34

Qı	uestion	Sections	Indicative material	Mark	Total
1	(a)	PDO layout	I Constructs one table for all 7 results. (Table does not need lines, does need something entered for each experiment)	1	
		PDO recording	 Appropriate headings and units for data given. Volume in cm³ or /cm³ or (cm³). Temperature in °C or /°C or (°C). (All 4 correct headings and units must appear in the table.) 	1	
		PDO recording	III All temperatures recorded to the nearest 0.5 °C both in the table and for T_1 , at least one of the readings must be .5 (others .0) or vice versa.	1	
		ACE interpret- ation	IV Correctly calculates all 7 temperature rises (from the table(s)).	1	
		MMO quality	V + VI Compare temp rise for addition of 14 cm^3 of FB 1 with Supervisor value. Default value = 11.0 °C Award 2 marks for ΔT within ± 1.0 °C . Award 1 mark for ΔT within ± 2.0 °C .	2	[6]
	(b) (i)	PDO layout	I ΔT on <i>y-axis</i> and volume of FB 1 on <i>x-axis</i> . Axes clearly labelled (ignore units).	1	
			II Linear scale chosen to go at least 2 °C above highest reading and to be a minimum of 6 squares vertically including the 2 °C; minimum 5 large squares for volume.	1	
			III All points plotted to within half a small square (6 min).	1	
	(ii)	ACE interpret- ation	IV Draws both straight lines of best fit.	1	
	(iii)		V Reads correctly the value of FB 1 from the intercept of the two lines.	1	[5]

Γ	Page 3	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9701	34

					
(c) (i) and (ii)	ACE interpret-	ı	Correctly calculates $\frac{2.00 x (b)(iii)}{1000}$	1	
	ation		and same answer for (c)(ii)		
(iii)		11	Correctly calculates $\frac{1000 x (c)(ii)}{[30.00-(b)(iii)]}$	1	
	PDO Display	111	Show use of 2 × (b)(iii) /1000 in (i) and all 3 answers to 3 or 4 sf	1	[3]
(d)	ACE interpret- ation	An <u>y</u> •	y two of: change in volume makes no difference to the accuracy as temp rise the same decreased accuracy as less accurate measurement of volume with reference to measuring cylinder or burette (comparative needed or reference to precision/calibration or % error) more accurate as greater number of experiments so more points to get an accurate intercept or better lines of best fit	2	[2]
				[To	otal: 16]

2	(a)	MMO collection	I	Initial and final volumes recorded for rough and initial, final and volume added recorded for accurate titrations.	1	
		PDO recording	II	All accurate burette readings recorded to 0.05 cm ³ . Do not award this mark if: 50(.00) is used as an initial burette reading; more than one final burette reading is 50(.00); any burette reading is greater than 50(.0).	1	
		MMO decision	III	Two uncorrected accurate titres within 0.1 cm^3 . Do not award if, having performed two titres within 0.1 cm^3 , a further titration is performed that is more than 0.1 cm^3 from the closer of the original 2 titres unless a further titration has been carried out which is within 0.1 cm^3 of any others. Do not award if titres from burette readings to no dp are used (apart from use of 0 for initial reading).	1	

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	34

then selects two identica to calculate	s the 'best' ti al; titres with mean corre	ccurate burette readings to the nearest 0.05 cm ³ , checks sub tres for Supervisor and candidate using the hierarchy: <i>in 0.05 cm³; titres within 0.1 cm³; etc.</i> ct to 0.01 cm ³ . ndidate mean titre with Supervisor mean titre.	otractions	s and
(a) (cont.)	MMO quality	IV + V Award 2 marks if $\delta \le 0.20 \text{ cm}^3$. Award 1 mark if $0.20 < \delta \le 0.50 \text{ cm}^3$.	2	
		If best titres are $\geq 0.50 \text{cm}^3$, cancel one of the Q marks.		[5]
(b)	ACE interpret- ation	Check mean titre is correctly calculated from clearly selected values (ticks or working). Candidate must average two (or more) titres that are within 0.20 cm ³ of each other. Working must be shown or ticks must be put next to the two (or more) accurate readings selected. The mean should normally be quoted to 2 dp rounded to the nearest 0.01. Two special cases where the mean may not be to 2 dp: allow mean to 3 dp only for 0.025 or 0.075 eg 26.325; allow mean to 1 dp if all accurate burette readings were given to 1 dp and the mean is exactly correct. eg 26.0 and 26.2 = 26.1 is correct but 26.0 and 26.1 = 26.1 is incorrect. Note: the candidate's mean will sometimes be marked as correct even if it is different from the mean calculated by the examiner for the purpose of assessing accuracy.	1	[1]
(c)	ACE interpret- ation	 (i) Correctly calculates 0.2 × (b)/1000 and same ans in (ii) to 3 or 4 sf 	1	
		II (c)(ii) × 400	1	
	PDO display	III Working in the correct direction shown in (i) and (iii).	1	[3]
	1	1	ר]	「otal: 9]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	34

FB 5 i	s NaOH(aq)	FB	6 is FeSO ₄ (aq); FB 7 is (Zn(NO ₃) ₂ + KI)(aq); FB 8 is Pb FB 9 is Na ₂ SO ₄ (aq)	₀(NO₃)₂(a	q);
(a)	MMO collection	 	FB 5 and FB 6 : a green ppt, insol in excess turning brown/darkening	1 1	
		111	FB 5 and FB 7: a white ppt, sol in excess	1	
			If excess omitted in the tests above then allow 1 mark for three correctly coloured ppts.		
		IV	FB 5 and FB 8: white ppt, sol in excess	1	
		v	FB 6 and FB 7 : no reaction/no change (<i>not dash</i>) (ignore any ref to solution turning yellow/orange/brown)	1	
		VI	FB 6 and FB 8: white ppt and FB 7 and FB 8: yellow ppt	1	[6]

(b)	ion	Fe ²⁺	Pb ²⁺	Zn ²⁺	I_	OH⁻	SO4 ²⁻
	solution	FB 6	FB 8	FB 7	FB 7	FB 5	FB 6

(b)	ACE con- clusion	6 correct scores 3 marks 5 correct scores 2 marks 3 or 4 correct scores 1 mark <i>(freestanding marks)</i>	3	[3]
(c)	MMO decision	(Aqueous) BaC l_2 or Ba(NO ₃) ₂ and HC l or HNO ₃ (or names) or Pb(NO ₃) ₂ and HNO ₃ (either way round but check that obs fit)	1	
		or add HC <i>l</i> , HNO ₃ , H ₂ SO ₄ and observe fizzing with SO ₃ ^{2–} or test gas with (acidified) dichromate/ manganate(VII) or add acidified sodium/potassium dichromate/ manganate(VII) (to solution) with SO ₃ ^{2–} : colour change from orange/purple to green/colourless or decolourises		
	MMO collection	White ppt insol/no gas/no (further) reaction in acid or no reaction/no gas/no colour change of indicator (from obs) (with Ba ²⁺ route may gain reagent mark if suitable acid is only named in obs) or no colour change of solution/ (from obs)	1	
		and SO ₄ ²⁻ identified		[2]

		Mark Scheme	Syllabus		aper
	G	CE AS/A LEVEL – May/June 2013	9701		34
MMO decision	I	Choice of first reagent from following list (a	ny)	1	
ACE con- clusion	II	Correct deduction(s) from correct positive of	obs.	1	
MMO decision	111	distinguishing between the pair** (e.g. carb dichromate pairing cannot be credited as c	oonate / annot	1	
ACE con- clusion	IV	Correct deduction from correct obs.		1	[4]
	ACE on- lusion AMO lecision	AMO lecision ACE II Iusion AMO lecision III ACE on-	GCE AS/A LEVEL – May/June 2013 MMO I Choice of first reagent from following list (a condition on a condition of the conditing and the condition of the condition of the condition	GCE AS/A LEVEL – May/June 2013 MOD I Choice of first reagent from following list (any) MOD II Choice of first reagent from correct positive obs. ACE II Correct deduction(s) from correct positive obs. MOD III Choice of second reagent which is capable of distinguishing between the pair** (e.g. carbonate / dichromate pairing cannot be credited as cannot identify if the two are ethanol and ethanal; ditto Tollens' and Na) ACE IV Correct deduction from correct obs.	GCE AS/A LEVEL – May/June 2013 9701 MMO I Choice of first reagent from following list (any) 1 ACE II Correct deduction(s) from correct positive obs. 1 AMO II Correct deduction(s) from correct positive obs. 1 MMO III Choice of second reagent which is capable of distinguishing between the pair** (e.g. carbonate / dichromate pairing cannot be credited as cannot identify if the two are ethanol and ethanal; ditto Tollens' and Na) 1 ACE IV Correct deduction from correct obs. 1

** If both tests identify the same compound, award marks for the higher scoring answer.

reagent	ethanol	ethanal	ethanoic acid
*acidified potassium (or sodium) dichromate	orange/solution turns green	orange/solution turns green	(no reaction)
*acidified potassium manganate(VII)	purple/solution turns colourless/pale pink	purple/solution turns colourless/pale pink	(no reaction)
Brady's (2,4– DNP(H))	(no reaction)	yellow-orange/ orange/red ppt	(no reaction)
Tollens'/ammoniacal silver nitrate	(no reaction)	silver (mirror) grey/black ppt	(no reaction)
Fehling's	(no reaction)	orange/red/orange- brown/red-brown ppt	(no reaction)
Benedict's	(no reaction)	orange/red/orange- brown/red-brown ppt	(no reaction)
named carbonate or hydrogen carbonate	(no reaction)	(no reaction)	effervescence/ gas which turns limewater milky
magnesium	(no reaction)	(no reaction)	effervescence/ gas which pops with lighted splint

Page 7		Mark Schen	Syllabus	Pape	
	(GCE AS/A LEVEL – Ma	ay/June 2013	9701	34
sodium		effervescence/ gas which pops with lighted splint	(no reaction)	effervescence/ gas which pops with lighted splint	
sodium hydrox ref to checking temperature		(no reaction)	(no reaction)	temp increases	
named indicat (not phenolphthale		(no reaction)	(no reaction)	turns correct final colour	
named alcoho H ₂ SO ₄ warm/h		(no reaction)	(no reaction)	sweet/fruity/ester smell	
named carbox acid + c. H ₂ SC warm/heat		sweet/fruity/ester smell	(no reaction)	(no reaction)	
PCl ₅ or PCl ₃ /S	SOC l ₂	misty/steamy fumes	(no reaction)	misty/steamy fumes	
triiodomethan I ₂ +NaOH	e test/	(pale) yellow ppt	(pale) yellow ppt	(no reaction)	
named –oyl cł	nloride	sweet/fruity/ester smell	(no reaction)	(no reaction)	

* deduction marks allowed from no acidification/H⁺