MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2				Mark Scheme	Syllabus	Paper	
				GCE AS	/A LEVEL – May/June 2013	9701	22	
1	a lo a w		a lor a we	se is a proton acc ne pair donor eak base is not full NH ₃ + H ₂ O $=$ 1	ly ionised		(1) (1)	
				- H ⁺ ⇒ BH ⁺ or e s necessary	equivalent		(1)	[3]
	(b)	(i)	state	ed pressure ed temperature ied catalyst	greater than 1 atm up to 5 atm 400 to 500 °C V ₂ O ₅ /vanadium(V) oxide		(1) (1) (1)	
		(ii)	and	is dissolved in contract then diluted with visco SO_3 dissolved in			(1)	[4]
	(c)	(i)	C <i>I</i> CI	n concentrated su H₂CH=CHC <i>l</i>	Ilfuric acid		(1)	
			-	ammonia CH ₂ CH(OH)CH ₂ N	H ₂		(1)	
		(ii)		eophilic stitution			(1) (1)	[4]
							[Total	11]

	Page 3		Mark Scheme	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2013	9701	22	
2			SO ₄) = $\frac{25.0 \times 1.00}{1000} = 0.025$ mol aOH) = $\frac{16.2 \times 2.00}{1000} = 0.0324$ mol		(1) (1)	
	(iii)	n(H₂	SO ₄) reacting with NaOH = $\frac{0.0324}{2} = 0.0162$ mol		(1)	
	(v) (vi) (vii)	n(NF n(Na mas	SO ₄) reacting with NH ₃ = 0.025 - 0.0162 = 0.0088 mol H ₃) reacting with H ₂ SO ₄ = 2 x 0.0088 = 0.0176 mol aNO ₃) reacting = $n(NH_3)$ produced = 0.0176 mol s of NaNO ₃ that reacted = 0.0176 x 85 = 1.496 g NaNO ₃ = $\frac{1.496 \times 100}{1.64} = 91.2195122 = 91.2$		(1) (1) (1) (1)	
		give give	one mark for the correct expression one mark for answer given as 91.2 – i.e to 3 sig. fig. v ecf where appropriate		(1) (1)	[9]
	(b)	NaN	O_3 +5 and NH_3 -3 both required		(1)	[1]

[Total: 10]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

3 (a) penalise (-1) the use of names of elements or formulae of compounds

(i)	Са	(1)	
(ii)	O or N or C	(1)	
(iii)	C or N or S or F or Cl or Br	(1)	
(iv)	Si or Ge or B	(1)	
(v)	Al or Si or P or S or H	(1)	
(vi)	Al	(1)	[6]

(b)	(i)

elen	nent	Na	Mg	Al	Si	Р	S
oxi	ide	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5/P_4O_{10} or P_2O_3/P_4O_6	SO ₂
flai	me	yellow or orange	white	white	white	white or yellow	blue

formula of oxide colour of flame

(ii)

chloride	NaC1	MgCl ₂	A <i>l</i> C <i>l</i> ₃ or A <i>l</i> ₂ C <i>l</i> ₆	SiC <i>l</i> 4	PC <i>l</i> ₃ or PC <i>l</i> ₅	SC <i>l</i> ₂ or S ₂ C <i>l</i> ₂
рН	7	6.5 to 6.9	1 to 4		4	

formula of chloride pH of solution formed

(c) (i)

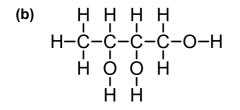
(ii) intermolecular forces/van der Waals' forces are stronger or greater in ICl (1) ICl has most electrons or has the largest permanent dipole (1)
(iii) ICl (1)

[Total: 15]

(1) (1)

(1) (1) [4]

(1)


Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	22

4 (a)

A	Br ₂ in an inert organic solvent	CH₃CHBrCHBrCH₂OH
В	PC <i>l</i> ₅	CH₃CH=CHCH₂C <i>l</i>
С	H_2 and Ni catalyst	CH ₃ CH ₂ CH ₂ CH ₂ OH
D	NaBH₄	NO REACTION
E	$K_2Cr_2O_7/H^+$, heat under reflux	CH₃CH=CHCO₂H

give one mark for each correct answer

(5 × 1) [5]

С

(1) [1]

(1) (1)

[2]

(c)

Correct C₄ with C=C in position 2 accept *cis* form correctly shown $-CO_2H$ allow ecf on candidate's answer to E in (a)

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/Jun	ne 2013 9701	22
(d) (i)	reagent obse	rvation	
	Tollens' reagent silver grey p black	range ppt. mirror or opt. or ppt. red ppt.	
		ed ppt.	
	correct reagent observation		(1) (1)
(ii)	reduction or nucleophilic addiction		(1) [3]
(e)	C : H : O = $\frac{73.7}{12}$: $\frac{12.3}{1}$: $\frac{14.0}{16}$		
	= 6.14 : 12.3 : 0.875 = 7.01 : 14.1 : 1		(1)
	gives C ₇ H ₁₄ O formula must be given		(1) [2]
			[Total: 13]

Page 7			Scheme	Syllabus		
		GCE AS/A LEVE	GCE AS/A LEVEL – May/June 2013 9701		22	
5	(a)	$C_4H_8O_2$			(1)	[1]
	(b)					
		HCO ₂ CH ₂ CH ₂ CH ₃	HCO₂CH(CH ₃) ₂		
		w	x		_	
		CH ₃ CO ₂ CH ₂ CH ₃	CH ₃ CH ₂ C	O_2CH_3		
		Y	Z			
		give one mark for each correct	answer		(4 × 1)	[4]
	(ii)	CHO or aldehyde absent >CO or carbonyl absent CO ₂ H or carboxylic acid pre-	sont		(1) (1) (1)	[3]
	(111)	$-CO_2 \cap$ or carboxylic acid pre-	sent		(1)	[3]
	(d) (i) (ii)	CH₃CO₂H or ethanoic acid Y above			(1) (1)	[2]
	(e)	none – no chiral carbon atoms	present		(1)	[1]