MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

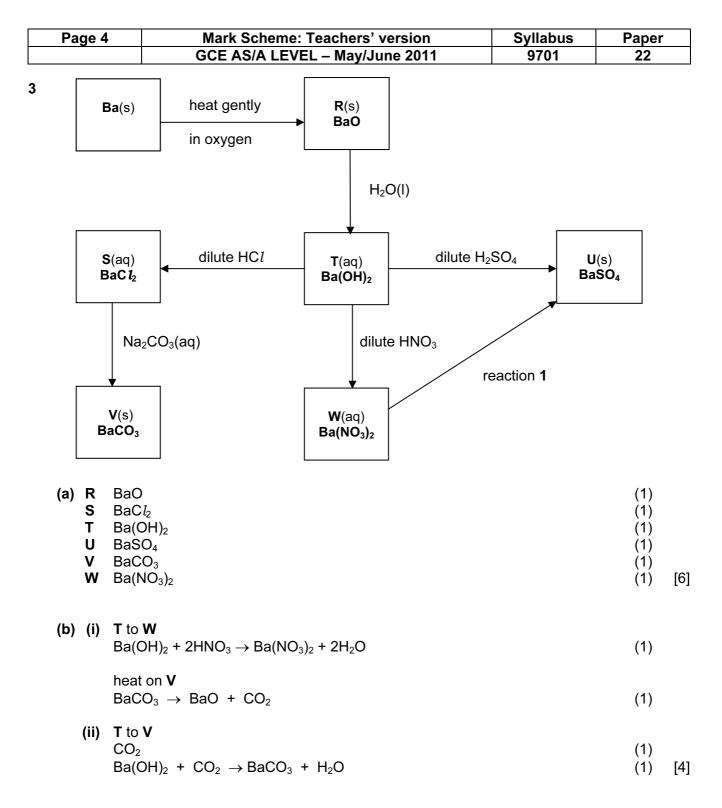
9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

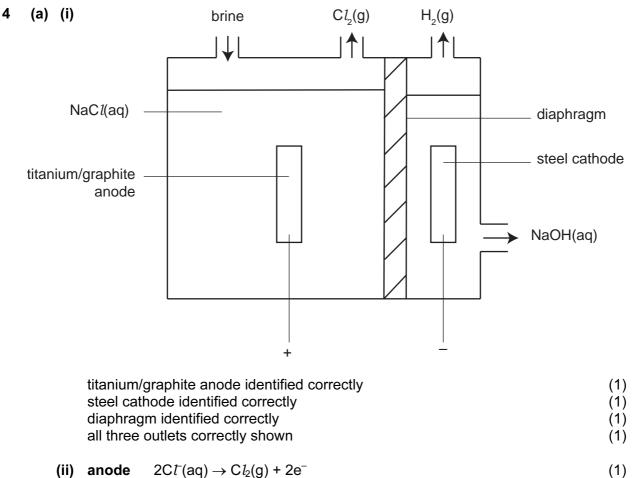
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9701	22	
1		= [C [Cl units	H ₃ CH ₂ R][H ₂ 0] H ₃ CH ₂ H][ROH]		(1) (1)	[2]
	(b) (i)	<i>n</i> (Na	$P(OH) = \frac{22.5 \times 2.00}{1000} = 0.045$		(1)	
	(ii)	<i>n</i> (Na	nOH) = n(HCl) = 0.005		(1)	
	(iii)	CH₃($CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2O$		(1)	
	(iv)		aOH) = 0.045 – 0.005 = 0.04 v ecf on (i) and/or (ii)		(1)	[4]
	(c) (i)		nOH) and $n(CH_3CO_2H) = 0.04$ H_3CO_2R) and $n(H_2O) = 0.06$		(1) (1)	
	(ii)		$\frac{0.06 \times 0.06}{0.04 \times 0.04} = 2.25$			
			v ecf on wrong values in (b)(i) v ecf on wrong expression in (a)		(1)	[3]
			action with ester is high or action with acid is low			
			with ester is slow or with acid is fast		(1)	[1]
	· · ·		m moves to RHS/more ester would be formed $in value of K_c$ or		(1)	
			e system to equilibrium		(1)	[2]
					[Total:	12]


	Page 3		Mark Scheme: Teachers' version			Syllabus	Paper			
			GCE	AS/A LEVE	EL – May/Ju	une 2011		9701	22	
2	(a)		CH ₂ =CH	2 + HF	→ C	H ₃ CH ₂ F				
			ds 4 C-H ken 1 C=C mol ⁻¹ 1 H-F	1640 610 <u>562</u> 2812	bonds made /kJ mol ⁻¹	5 C-H 1 C-C 1 C-F (240	2050 350 <u>E</u> 00 + E)			
			reactant bond + 610 + 562 = 2		bl ⁻¹				(1)	
		making	product bonds	gives						
		5 x 410	+ 350 + E =	(2400 + <i>E</i>	.] kJ mol⁻¹				(1)	
		$\Delta H^{e}_{reactio}$	_n = - (2400 + <i>E</i>) + 2812 =	– 73 kJ mol	-1			(1)	
		(2400 +	E) = 2812 +	73 = 288	5 kJ mol ⁻¹					
		E = 288	35 - 2400 = 4	185 kJ mol ⁻	1				(1)	
		allow ec	f on wrong bon	d energy v	alues and/o	r incorrec	t arithme	etic		[4]
	(b)	any two non-toxic unreactiv volatile non-flam easily liq	c ve nmable						(1 + 1)	[2]
	(c)	in CC <i>l</i> ₂F C-C <i>l</i> bor	nd energy is 34	0 kJ mol⁻1	and is weal	ker than C	C-F or C-	H bonds	(1)	
		C-Cl bor	nd is broken by adicals are for	uvl or					(1)	[2]
	(d)		trapping of refle ducing global w		from the Ea	rth in the	lower at	mosphere		
		(ii) CO ₂	/carbon dioxide	Э					(1)	[3]
	(e)	octahed	ral						(1)	[1]
									[Total: 12]	

(c)	Na ₂ SO ₄ (aq)/K ₂ SO ₄ (aq) or any soluble sulfate	(1)	[1]
-----	---	-----	-----

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	22
(d) (i)	Ba:O = <u>81.1</u> : <u>18.9</u> 137 16		(1)
	= 0.59 : 1.18 = 1 : 2 gives BaO ₂		(1)
(ii)	BaSO ₄		(1)
(iii)	$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$		(1) [4]

- (ii) anote $2Cl(aq) \rightarrow Cl_2(g) + 2e$ (1) cathode $2H^+(aq) + 2e^- \rightarrow H_2(g)$ or $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ (1) [2]
- (iii) sodium hydroxide (1) [1]

[Total: 7]

[4]

Page				Syllabus	Paper		
		GCE AS/A LEVEL – May/June 2011		9701	22		
5 (a) Cł	H₂OCC	$O(CH_2)_{16}CH_3$					
L CI	носо	(CH ₂) ₁₆ CH ₃					
 Cl	H ₂ OCC	$O(CH_2)_{16}CH_3$					
all	l three	alcohol group	s mus	t be esterified		(1)	[1]
		C <i>l</i> or dilute H ₂ I(aq) followed		r dilute mineral acid ilute acid		(1)	[1]
(c)	CH ₃	(CH ₂) ₇	Н				
		с—с	(СН	₂) ₇ CO ₂ H		(1)	[1]
(d) (i)) fatty	acid that con	tains n	more than one C=C bond		(1)	
(ii)		ogen el/Raney nicke	el/plati	inum/palladium		(1) (1)	[3]
(e) (i)		(CH ₂) ₇ CHO C(CH ₂) ₇ CX				(1) (1)	
(ii)		dinitrophenylh ow/orange/red				(1) (1)	
(iii)		ens' reagent er mirror/	or or	Fehling's/Benedict's solution brick red ppt.		(1)	
		precipitate				(1)	[6]
(f) (i)) two					(1)	
(ii)) este	r				(1)	[2]
						[Total:	14]