MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/23 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2010	9701	23	
1	(a) enth from in th	alpy change when 1 mol of a compound is formed (1) its elements (1) eir standard states under standard conditions (1)		[3]	
	(b) (i)	$\begin{array}{rl} & N_2H_4(l) \ + \ O_2(g) \ \rightarrow \ N_2(g) \ + \ 2H_2O(g) \\ \Delta H_f^{\rm o}/{\rm kJ} \ {\rm mol}^{-1} \ \ + 50.6 & -241.8 \\ \Delta H^{\rm o}_{\rm reaction} \ &= \ 2(-241.8) \ - \ (+50.6) \ (1) \\ &= \ -534.2 \ {\rm kJ} \ {\rm mol}^{-1} \ (1) \end{array}$			
	(ii)	E_{a} is too high (1)			
	(iii)	products are H_2O and N_2 which are harmless/non toxic or are already present in the atmosphere (1)		[4]	
	(c) (i)	'dot-and-cross' diagram (1) ● H * N * H • X H			
	(ii)				
	(iii)	minimum is $H \longrightarrow N \longrightarrow H$ $H \longrightarrow H$			
		allow bond angle around N atom between 109° and 104°	(1)	[4]	

[1]

[Total: 12]

(d) -2 (1)

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2010	9701	23
2	2 (a) the ener in one m or the enth M(g) →		rgy required to remove one electron from each atom (1) nole of gaseous atoms (1) alpy change in kJ mol ⁻¹ for (1) $M^{+}(g) + e^{-}(1)$		[2]
	(b)	(i)	first ionisation energy decreases down Group 1 (1) outermost electron is further from nucleus or has greater shielding (1)		
		(ii)	outermost electron experiences less attraction \mathbf{or} formation of M^+ cation becomes easier down Group 1 (1)	[3]
	(c)	(i)	$n(Li) = \frac{0.83}{6.9} = 0.12 (1)$		
		(ii) 2	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
		(iii)	2 mol Li \rightarrow 2 mol LiOH 0.12 mol Li \rightarrow 0.12 mol LiOH in 0.50 dm ³ (1) [LiOH] = $\frac{0.12 \times 1}{0.50}$ = 0.24 mol dm ⁻³ (1)		[5]
	(d)	sodiu or w or co	ium burns with a yellow flame white solid formed olour of chlorine disappears (1)		

 $2Na + Cl_2 \rightarrow 2NaCl(1)$

[2]

[Total: 12]

Page 4		4	Mark Scheme: Teachers' version Syll		Syllabus	Paper
			GCE AS/A	A LEVEL – May/June 2010	9701	23
3	(a) (i)	Ca (1)			
	(ii)	S or	C [allow H (H ₂ O ₂)	or N (NO, NO ₂)] (1)		
	(iii)	He (1)			
	(iv)	Al (1)			
	(v)	Si o	Ge (1)			
	(vi)	Al (*)			[6]
	(b) an	y two	from N or O or F (1)		[1]
	(c) (i)	Al ₂ C	₃ or SiO ₂ (1)			
	(ii)	SO ₂	or P ₂ O ₃ /P ₄ O ₆	, (1)		
		and SO₃	and or P ₂ O ₅ /P ₄ O ₁	₀ (1)		
	(iii)	Na ₂ 0	D (1)			
	(iv)	Al ₂ C	₃ (1)			[5]
						[Total: 12]
4	(a) rea	action	1 free radical s	substitution (1)		
	rea	action	2 elimination (7	1)		[2]
	(b) (i)	in re	action 4	$CH_{3}C(OH)(CN)CH_{3}(1)$		
	(ii)	in re	action 3	I ⁻ (1)		
	(iii)	in re	action 3	CH ₃ I		[0]
		or ir	reaction 4	$CH_3COCH_3(1)$		[3]
	(c) as	specie	s which has a lone	pair of electrons		
	or	which	reacts with an elec	ctron deficient (δ +) centre in a moleo	cule (1)	[1]
	(d) in	reactio	on 3 OH⁻ (1)			
	in	reactio	n 4 CN⁻(1)			[2]
	(e) π k	ondin	g is electron rich (1	1)		[1]
						[Total: 9]

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9701	23

OH

[3]

(b)

-

5

(a)

r			
	reagent(s)	condition(s)	
aton 1	$Cr_2O_7^{2-} / H^+$	distil off aldehyde	
step i	(1)	(1)	
step 2	HCN in presence of CN [−] or KCN + dil H ₂ SO ₄ (1)	room temperature (1)	
step 3	aqueous mineral acid/ /H ₂ SO ₄ /HC/ not HNO ₃ (1)	heat under reflux (1)	

in each case, the reagent must be correct before the condition mark is awarded

[6]

(c) (i) a protein (1)

(ii) 2,4-dinitrophenylhydrazine/Brady's reagent (1) yellow-orange-red ppt. (1)
(iii) acidified K₂Cr₂O₇ or Lucas test or CH₃CO₂H/H⁺ (1) colour changes or cloudiness or fruity smell from orange to green (1)
(iv) LiA/H₄/NaBH₄ or H₂/Ni etc. (1)

[6]

[Total: 15]