MARK SCHEME for the May/June 2007 question paper

9701 CHEMISTRY

9701/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2		Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – May/June 2007	9701	02	
(a) (i)	betw	een 117° and 120°		[1]	
(ii)					
()	1823	H. N .N .H			
		ਜ ਜ			
		ectrons must be shown		[4]	
		e N-N bond pair on each N atom		[1] [1]	
<i></i>					
(iii)	betw	een 107° and 109°		[1] [4]	
• •		van der Waals' forces		[1]	
hyc	drazine	e – hydrogen bonds		[1]	
hyd	drogen	bonds are stronger			
orv	van de	r Waals' forces are weaker		[1] [3]	
(c) cor	rect di	pole on O—H and N—H bonds		[1]	
lab	elled h	nydrogen bond shown			
bet	ween	an O atom of H_2O and a H atom of N_2H_4			
or	betwee	en an N atom of N_2H_4 and a H atom of H_2O		[1]	
lon	e pair	on O atom <i>or</i> on N atom <i>in the H bond</i>			
i.e.					
		N:****H-O			
	or	0			
	0,	· · · · · · · · · · · · · · · · · · ·		[1] [3]	
	4	0:*****H-N-			
(d) (i)	CH ₂ :	$= CH_2 + HCl \rightarrow CH_3CH_2Cl$		[1]	
(ii)	elec	trophilic addition		[1]	
(iii)	there	e is no further unsaturation			
()		H_3CH_2Cl molecule is saturated			
		possibility of addition		[4] FO	
		o free radicals are present		[1] [3]	
(e) (i)	acid	– base/neutralization		[1]	
(ii)		om has a lone pair of electrons			
		atom can behave as a base		1 41	
	OF N	atom can form dative bond		[1]	
(iii)		N atom has a lone pair			
		ach nitrogen atom can behave as a base		[4] [9]	
	UI ES	ach nitrogen atom can form a dative bond		[1] [3]	
				[Total: 16]	

(b) $K_{C} = \frac{[C]}{[C]}$	(b) $K_{C} = \frac{[CH_{3}CO_{2}C_{2}H_{5}][H_{2}O]}{[CH_{3}CO_{2}H][C_{2}H_{5}OH]}$							
(c) CH₃CO	$H + C_2 H_5 OH \Rightarrow C$	CH ₃ CO ₂ C ₂ H ₅ +	H ₂ O					
initial m	oles 0.5	0.5	0.1	0.1				
equil. m	oles $(0.5 - x)$	(0.5 - x)	(0.1 + <i>x</i>)	(0.1 + <i>x</i>)		[1]		
equil. co mol dm	$\frac{(0.5-x)}{V}$	$\frac{1}{V} \qquad \frac{(0.5-x)}{V}$	$\frac{(0.1+x)}{V}$	$\frac{(0.1+x)}{V}$				
$\kappa_c = \frac{(0)}{(0)}$	$\frac{(1+x)^2}{(5-x)^2} = 4$					[1]		
gives x	= 0.3					[1]		
n(CH₃C	$O_2H) = n(C_2H_5OH$	l) = 0.2 and						
n(CH₃C	$O_2C_2H_5) = n(H_2O)$) = 0.4				[1]		
allow ec	f on wrong equil.	moles subject	to <i>x</i> < 0.5			[4]]	
(d)								
alcohol reagent(s) and conditions	CH3CH	2CH2CH2OH	CH₃CH₂Cŀ	I(OH)CH₃	(CH₃)₃COH			
red phosphorus a iodine	nd	X	CH ₃ CH ₂	CHCH ₃	Χ			
heat under reflux				I [1]				
concentrated H ₂ S	O ₄	V			CH ₃ —C=CH ₂ CH ₃			
heat					[1]		
$Cr_2O_7^{2-}/H^+$				00011				
heat under reflux		I ₂ CH ₂ CO ₂ H [1]	CH₃CH₂	[1]	no reaction ا	^{1]} [5]	1	
L		[']		[']		1] [5] al: 11]		
		©UC	CLES 2007		[100		4	

(a) rate of forward reaction equals 2 rate of backward reaction or equilibrium concentrations remain constant while reaction is occurring

Mark Scheme GCE A/AS LEVEL – May/June 2007

Page 3

Syllabus

9701

Paper

02

[1] **[1]**

Page 4	1	Mark Scheme GCE A/AS LEVEL – May/June 2007							vllabus 9701	Paper 02
(-)		002			may/o				5701	02
(a)	1s	2s	2р	3s	Зр	3d	4s	4p	4d	
Ca	a 2	2	6	2	6	0	2	0	0	[1]
Sr	²⁺ 2	2	6	2	6	10	2	6		[1]
		·							·	
(b) (i)	more s	hells of ele	ectrons							[1]
(ii)	outerm	ost shell h	as been	remove	d					[1]
(iii)	outerm	ost electro	ons are fu	urther fro	om nucl	eus/there	e are m	ore she	lls	[1]
	increas	ed shieldi	ng							[1]
(a) (i)	vonuola	w reaction	~							[4]
(c) (i)		ow reaction on of bubb		is						[1] [1]
	Mg + H	$_2O \rightarrow MgO$	O + H₂							
	allow N	1g + 2H ₂ O	\rightarrow Mg(C	0H) ₂ + H ₂	2					[1]
(ii)	faster r	eaction the	an with N	٨g						[1]
		uspension								
		ution of ga um dissolv		opears						[1]
	Ca + 2I	$H_2O \rightarrow Ca$	(OH)₂ +	H₂						[1]
		mark in (i	· /-	_	lescribe	ed as col	ourless			[1]
			, o, (ii) ii	guo io u			ounced			[,]
(d) (i)	gas evo									[1]
	gas is t	orown								[1]
(ii)		$(0_3)_2 \rightarrow 2Sr$ products	O + 4NO	₂ + O ₂						[1]
		ed equatio	'n							[1]
									ſTota	al: 17 max.

Page 5		Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – May/June 2007	9701	02	
4	(a) (i) whit AgC	e ppt. Sl		[1] [1]	
	(ii) whit HC≀	e/steamy/misty fumes		[1] [1]	
		ourless gas evolved <i>or</i> Na dissolves or CH ₃ ONa		[1] [1]	[6]
	(b) C:H:O	$=\frac{40}{2}:\frac{6.7}{1}:\frac{53.3}{16}$		[1]	
	= 3.33 :	6.7 : 3.33		[1]	
	= 1 : 2 :	1			[2]
	(c) 	C=O HO O-H HO HO HO HO HO HO HO HO HO HO HO HO HO	H 		
		[1] [1] [z 1]		[3]
	can	solid NaHCO ₃ didate's carboxylic acid [X above] /CO ₂ evolved		[1] [1]	
	can	Tollens' reagent didate's aldehyde [Z above] mirror/Ag ppt.		[1] [1]	[4]
		ect structures [of Y above] labelled <i>cis</i> and <i>trans</i>			[2]
				[Total:	17]