MARK SCHEME for the October/November 2012 series

9700 BIOLOGY

9700/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	23

Mark scheme abbreviations:

; / R A	separates marking points alternative answers for the same point reject accept (for answers correctly cued by the question, or by extra guidance)
AW	alternative wording (where responses vary more than usual)
<u>underline</u>	actual word given must be used by candidate (grammatical variants excepted)
max	indicates the maximum number of marks that can be given
ora	or reverse argument
mp	marking point (with relevant number)
ecf	error carried forward
1	ignore
AVP	alternative valid point (examples given)

	Page 3	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2012	9700	23	
1	accept first of accept phone				
Α	name	mitochondrion ; A mitochondria			
	<i>function</i> (site	of); <u>ATP</u> , synthesis / production / AW <u>aerobic</u> respiration link reaction Krebs cycle oxidative phosphorylation AVP R ATP energy			
в	name	Golgi (apparatus / body / complex) ; A dictyosome A Golgi			
	<i>function</i> (site	of); modification of protein / glycosylation / describe modification of lipid pack(ag)ing (of), protein / lipids production of (Golgi / secretory) vesicles / lysos ignore synthesis of protein <i>(incorrect name)</i> <i>lysosome function</i> = contains / storage of hydro <i>Golgi / secretory, vesicles</i> = transport, protein /	omes lytic / digestive	e, enzymes	
С	name	chloroplast(s) ;			
	<i>function</i> (site	of) ; photosynthesis light-dependent, reactions / stage (of photosynt light, absorption / AW light-independent, reactions / stage (of photosy Calvin cycle carbon fixation photophosphorylation A ATP synthesis ignore (treat as neutral) ref. to, glucose / oxyge ignore chlorophyll R light / dark, stage / reactions	nthesis)		
D	name	<u>rough</u> endoplasmic reticulum ; R RER or rough ER R endoplastic			
	<i>function</i> (site	of) ; protein / polypeptide, synthesis translation modification of protein / described (e.g. folding) protein transport (to Golgi) <i>(incorrect name)</i> <i>smooth endoplasmic reticulum</i> = lipid / steroid / <i>endoplasmic reticulum</i> = <i>ecf as above for RER</i>	•	nthesis / AW	

[Total: 8]

	Page 4			Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – October/November 2012	9700	23
2 ((a)			and TB ; ny other underlined diseases		[1]
((b)			swer in context of antibiotics, not antibodies bacteria in answer if not clear in mp 1		
		1 2 3 4 5 6	R vir igno 'all' r (so) (dise no re to re R ide	ensure) all <u>bacteria</u> are, killed / removed / eliminated / de rus / bacteria and virus <i>re antigen or pathogen or disease</i> <i>may be implied e.g. award if gain mp 2,3,4</i> no reservoir of infection remains / AW / ora ; ease) cannot be transmitted / cannot infect others / AW e ecurrence / disease does not return ; <i>in context of same</i> educe chance of / AW, (antibiotic / drug) resistance deve <i>ea that human becomes resistant to antibiotics</i> to mutation in context of resistance ;	e.g. spread / ora <i>person</i>	; [max 3]
((c)	(i)	<u>com</u> A sa fewe A no A fev A pro redu	s with / fits into / AW, active site ; R collides with / reacts <u>plementary</u> shape to active site / similar shape to substr ame shape as substrate / same <i>or</i> similar structure as su er, enzyme-substrate / E – S, <u>complexes</u> ; o ESC in context of one enzyme wer successful collisions between enzyme and substrate events formation of E – S <u>complexes</u> aces rate of / slows (enzyme) reaction ; duced enzyme activity / A less product formed	ate ; bstrate	[max 3]
		(ii)	(hum A pe peni	s that nans) do not have the enzyme for cell wall synthesis ; enicillin only inhibits bacterial enzymes cillin will not inhibit any human enzyme ; nan cells) do not have cell walls ;		[max 1]
	(iii) cell A in ref. cell lysis A ce bac stop AVE		A inf ref. t cell o lysis A ce bacto stops AVP	wall synthesis will stop / slow / be inhibited ; hibit, murein / peptidoglycan, synthesis to uptake of water by osmosis ; cannot withstand osmotic stress / cell cannot withstand t / bursting / AW ; ell wall weakened eria die / are killed / destroyed ; s bacteria dividing / reproducing / 'replicating' ; ; e.g. detail of action of penicillin (e.g. prevents cross-lin icillin) only works on growing cells		[max 3] [Total: 11]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9700	23

3 (a) look at quoted data to confirm qualitative statements if unclear

1 people who never smoked have the lowest percentage of deaths (due to lung cancer); must be comparative

for age

2 either

the younger / earlier the person starts smoking the higher the percentage of deaths or

the older / later the person starts smoking the lower the percentage of deaths (due to lung cancer);

for number of cigarettes per day

3 either

increasing / AW, the number of cigarettes smoked per day increases the percentage of deaths

or

decreasing / AW, the number of cigarettes smoked per day decreases the percentage of deaths ;

different 'start' ages for the two types of smokers

- 4 highest percentage deaths is for those with an early start <u>and</u> smoke, 21–39 (cigarettes per day) / the most / AW ;
- 5 greatest difference in percentage deaths occurs in those that start smoking early ; **ora** [max 4]
- (b) (i) 1 forms carboxyhaemoglobin;
 - 2 reduces affinity of Hb for oxygen / Hb has higher affinity for CO than for oxygen ; **ignore** 'picks up CO rather than oxygen', if mp3 is given then allow
 - 3 reduces quantity of oxygen transported (in blood) / AW ; R prevents
 - damages lining of arteries ;
 A promotes / AW, atheroma / atherosclerosis / plaque [max 2]
 - (ii) raises, heart rate / blood pressure ; reduces diameter of arterioles ; decreases blood flow to body extremities ; increases 'stickiness' of platelets / promotes, blood clotting / thrombosis ; [max 2]

	ge 6			Ma	ark Schem	е		Syllabus	Paper
			GCE AS/	A LEVEL	. – Octobe	r/Novembe	r 2012	9700	23
	/:::\	achla							
	(111)	goble							
		-	e / swell up ome bigger						
		R infla		/ unate					
			ce more / ex	cess mu	ICUS .				
		A lots			,				
		AVP ;	e.g. any ce	llular deta	ail such as i	more mitoch	ondria / G	Golgi bodies or	vesicles
		cilia:							
			sis / destru						
			ages R kills	-					
					g (action) /	moving muc	cus ;		
		R in c	ontext of mo	oving air					[max 4
									[Total: 12
(a)	(×)	400 ;;							
(a)	. ,	400 ;; nswer i	ncorrect or l	not to nea	arest 100 al	low one ma	rk for corr	ect working	
(a)	if ar	nswer i	ncorrect or l bar) 19 000				rk for corr	ect working	
(a)	<i>if ar</i> e.g.	<i>iswer i</i> (scale		0–21 000	divided by	50	rk for corr	ect working	[2
	if ar e.g. awa	nswer i (scale ard ma.	bar) 19 000 cone mark)–21 000 if a unit (e	divided by e.g. μm) is i	50 ncluded	rk for corr	ect working	[2
(a) (b)	if ar e.g. awa	nswer i (scale ard ma thick(e	bar) 19 000 c one mark ened) / lignif)–21 000 <i>if a unit (e</i> ied, walls	divided by e.g. μm) is i	50 ncluded	rk for corr	ect working	[2
	if ar e.g. awa	nswer i (scale ard ma thick(e ignor	bar) 19 000 c one mark ened) / lignif e strenghter)–21 000 if a unit (e ied, walls ned	divided by e.g. μm) is i prevent, c	50 <i>ncluded</i> ollapse ;	rk for corr	ect working	[2
	if ar e.g. awa	nswer i (scale ard ma. thick(e ignor A with	bar) 19 000 c one mark ened) / lignif)–21 000 if a unit (e ied, walls ned	divided by e.g. μm) is i prevent, c	50 <i>ncluded</i> ollapse ;	rk for corr	ect working	[2
	if ar e.g. awa	thick(o ignor A with ignor	bar) 19 000 (one mark ened) / lignit strenghter stands, con bursting)–21 000 if a unit (e ied, walls ned npression	divided by e.g. μm) is i prevent, c / negative	50 <i>ncluded</i> ollapse ;		ect working	[2
	if ar e.g. awa	thick(<i>ignor</i> <i>ignor</i> lignifie cellulo	bar) 19 000 c one mark ened) / lignif strenghter stands, con bursting d (wall), pre se, wall / lir)–21 000 if a unit (e ied, walls ned npression events lea ing, allow	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior	50 ncluded ollapse ; pressure	proofing ;		[2
	if ar e.g. awa 1	thick(<i>ignor</i> A with ignor lignifie cellulo A hyd	bar) 19 000 c one mark ened) / lignif strenghter stands, con stands, con bursting d (wall), pre se, wall / lir rogen bond)–21 000 if a unit (e ned npression events lea ning, allow	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic	50 ncluded ollapse ; pressure vides waterp n of water (n	proofing ; nolecules));	
	if ar e.g. awa 1 2 3 4	thick(<i>ignor</i> A with ignor Iignifie cellulo A hyd (relati	bar) 19 000 c one mark ened) / lignif strenghter stands, con bursting d (wall), pre se, wall / lir rogen bond vely) large c)–21 000 if a unit (e ied, walls ned pression events lea ing, allow ing / hydro liameter /	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic large cross	50 ncluded ollapse ; pressure vides waterp n of water (n s-sectional a	proofing ; nolecules)		
	if ar e.g. awa 1 2 3 4 5	thick (ignor A with ignor lignifie cellulo A hyd (relati hollow	bar) 19 000 c one mark ened) / lignif stands, con bursting d (wall), pro se, wall / lir rogen bond vely) large c f / empty / n)–21 000 if a unit (e ned npression events lea ning, allow ng / hydro liameter / o content	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic large cross s / no cytop	50 ncluded ollapse ; pressure vides waterp n of water (n s-sectional a olasm ;	proofing ; nolecules));	
	if ar e.g. awa 1 2 3 4 5 6	thick(e ignor A with ignifie cellulo A hyd (relati hollow no en	bar) 19 000 c one mark ened) / lignif strenghter stands, con stands, con d (wall), pre se, wall / lir rogen bond vely) large c d (walls / cor)–21 000 if a unit (e ned npression events lea ning, allow ng / hydro liameter / o content	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic large cross s / no cytop	50 ncluded ollapse ; pressure vides waterp n of water (n s-sectional a olasm ;	proofing ; nolecules));	
	if ar e.g. awa 1 2 3 4 5	thick(<i>ignor</i> A with <i>ignor</i> A with <i>ignor</i> <i>ignifie</i> cellulo A hyd (relati hollow no en elonga	bar) 19 000 cone mark ened) / lignif strenghter stands, con stands, con bursting d (wall), pre se, wall / lir rogen bond vely) large c / empty / n d walls / cor ated ;)–21 000 if a unit (e ned npression events lea ning, allow ing / hydro liameter / o content ntinuous 'f	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic large cross s / no cytop tubes' / AW	50 ncluded ollapse ; pressure vides waterp o of water (n s-sectional a plasm ; ' ;	proofing ; nolecules) area / wide); e / large lumen	
	if ar e.g. awa 1 2 3 4 5 6	thick(<i>ignor</i> A with <i>ignor</i> A with <i>ignor</i> lignifie cellulo A hyd (relati hollow no en elong A <i>if re</i>	bar) 19 000 c one mark ened) / lignif strenghter stands, con bursting d (wall), pre se, wall / lir rogen bond vely) large o / empty / n d walls / cor ated ; ferenced to)–21 000 if a unit (e ied, walls ned npression events lea ing, allow ing / hydro liameter / o content itinuous 'f <i>cells or v</i>	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic large cross s / no cytop tubes' / AW	50 ncluded ollapse ; pressure vides waterp of water (n s-sectional a plasm ; ; ells end to e	proofing ; nolecules) area / wide nd (to ma) ; e / large lumen ke tubes)	
	if ar e.g. awa 1 2 3 4 5 6	thick(<i>ignor</i> A with <i>ignor</i> A with <i>ignor</i> I gnifie cellulo A hyd (relati hollow no en elong A <i>if</i> re only a	bar) 19 000 cone mark ened) / lignif strenghter stands, con bursting d (wall), pre se, wall / lir rogen bond vely) large c d (walls / con d walls / con ated ; ferenced to llow mps 4-)–21 000 if a unit (e ied, walls ned npression events lea ing, allow ing / hydro liameter / o content otinuous 'f cells or v 7 in term	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesior ophilic large cross s / no cytop tubes' / AW ressels A ce s of ease /	50 ncluded ollapse ; pressure vides waterp n of water (n s-sectional a plasm ; ' ; ells end to e <i>efficiency o</i>	proofing ; nolecules) area / wide nd (to mai f water mo	; e / large lumen ke tubes) ovement	;
	if ar e.g. awa 1 2 3 4 5 6	thick (ignor A with ignor lignifie cellulo A hyd (relati hollow no en elong A if re only a mp 4	bar) 19 000 cone mark ened) / lignif stands, con stands, con bursting d (wall), pre se, wall / lir rogen bond vely) large c forenced to low mps 4- e.g. more sp)–21 000 if a unit (e ied, walls ned npression events lea ing, allow ng / hydro liameter / o content ntinuous 'f cells or v 7 in term bace allow	divided by e.g. μm) is i prevent, c / negative kage / prov vs adhesion ophilic large cross s / no cytop tubes' / AW ressels A ce s of ease / vs a greate	50 ncluded ollapse ; pressure vides waterp n of water (n s-sectional a olasm ; ' ; ells end to e efficiency of r volume to	proofing ; nolecules) area / wide nd (to ma f water mo flow / grea	; e / large lumen ke tubes) ovement ater volume per	; r unit time
	if ar e.g. awa 1 2 3 4 5 6	thick(<i>ignor</i> A with <i>ignor</i> A with <i>ignor</i> lignifie cellulo A hyd (relati hollow no en elonga A <i>if re</i> <i>only a</i> <i>mp 4</i> <i>or mp</i>	bar) 19 000 cone mark ened) / lignif stands, con stands, con bursting d (wall), pre se, wall / lir rogen bond vely) large c forenced to low mps 4- e.g. more sp)–21 000 if a unit (e ied, walls ned npression events lea ing, allow ing / hydro liameter / o content tinuous 'f cells or v 7 in term pace allow nimal res	divided by <i>a.g. μm) is i</i> prevent, c / negative kage / prov vs adhesion ophilic large cross s / no cytop tubes' / AW ressels A ca s of ease / vs a greate istance to f	50 ncluded ollapse ; pressure vides waterp of water (n s-sectional a plasm ; ' ; ells end to e <i>efficiency of</i> <i>r volume to</i> <i>low, allows</i>	proofing ; nolecules) area / wide nd (to ma f water mo flow / grea	; e / large lumen ke tubes) ovement	; r unit time

Pa	ge 7	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – October/November 2012	9700	23
(c)	1 2 3 4 5 6 7	water moves, down a <u>water potential</u> gradient / from a hig low(er) water potential, accept ψ for water potential; apoplast pathway, described / used in correct context; symplast pathway, described / used in correct context; evaporation from <u>mesophyll cell walls</u> ; A surface of mesophyll cells into air space(s); <i>must be linked to evaporation / water vapour</i> water <u>vapour</u> diffuses (out); <i>accept if no vapour but follows from evaporation</i> out / through / via <u>stoma</u> (ta);	ıh(er) water potenti	al to a
	8	R 'evaporates from the stomata' AVP ; ref. to water leaves unlignified terminals of xylem vertices and the storage of the	oscols	[max 5
	0	AVP, Tel. to water leaves uningrimed terminals of Aylerin w	633613	[max J
				[Total: 10
(a)	<i>all µ</i> 1 2 3 4 5 6 7 8	points except mp3 may be taken from a labelled/annotated ref. to, attachment / AW, to mRNA ; idea of two codon attachment, sites / space, for six bases mRNA has code for sequence of amino acids (in a polype (ribosome) provides sites for attachment of two tRNA (mo A implied each tRNA has a specific amino acid / AW ; (mRNA) codon – anticodon (tRNA), binding ; A description in terms of complementary base pairing A 'matching' formation of peptide bonds (catalysed by peptidyl transfer <i>idea of</i> ribosome moving along mRNA one codon at a time	<i>or</i> nucleotides ; eptide) ; blecules) ; rase) ;	[max 4
(b)	(i)	GGC ;		[1]
	(11)	CTA ;		[1
(c)	1 2 3 4 5 6	amino acid coded by codon 2 changed ; <i>idea of</i> every subsequent <u>codon</u> changed ; amino acids / protein sequence, up to and including codo ora amino acid sequence from codon 2 onwards is chang <i>idea of</i> premature chain termination (if stop codon further <i>idea of</i> change in, <u>primary</u> / <u>secondary</u> / <u>tertiary</u> , structure <i>idea of</i> protein non-functional ; ignore 'affect / effect' A in context of enzyme not functioning	ged; on) / AW;	V
	-	R if this point is out of context		
	7	AVP ; e.g. <u>frameshift</u> (mutation)		[max 3]
				[Total: 9]

	Page 8		Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – October/November 2012	9700	23
6	(a)	A alterna including interactir and abio in an ide	<u>d</u> abiotic, components / AW ; atives to biotic and abiotic g <i>commumity / AW for biotic and habitat / environment, fo</i> ng / AW ; <i>idea of</i> interactions between organisms <i>or</i> inter tic environment ntifiable / a defined / a self-contained area / place / unit <i>i</i> <i>f place if qualified with correct example</i>	ractions betwe	-
	(b)	A si	ses / shrubs / trees ; ngular or plural		[1]
			er / predatory insect ; ngular or plural		[1]
	(c)	1 ir 2 ir 3&4 e re n e d	oss at each level because of nedible parts / not all of the organism can be eaten ; ndigestible parts / not all is digested / egestion / faeces ; nergy / heat, losses from ;; espiration R energy used for respiration novement A energy used for movement xcretion igestion energy not utilised by plants by e.g. reflection from leaves	s, etc.	[max 3]
	(d)	1 decc 2 dige 3 <i>idea</i> 4 dear 5 proc 6 nitrif A fo sign A ni igno igno	a death of organisms or excretion of nitrogenous waste omposers / saprotrophs / bacteria / fungi / scavengers / o st / breakdown / hydrolyse, protein / urea ; of assimilation in / growth of, decomposers / AW ; mination ; luction of ammonium (ions) / ammonification ; A ammon fication described <i>or</i> denitrification described ; rmulae for ammonium ions, nitrite ions and nitrate ions to s trification described in terms of ammonium (ions) to nitrate ore nitrogen fixation as used correctly (N ₂ to fixed N) ore uptake of nitrate ions or ammonium ions by plants not credit nitrification if any confusion with nitrogen fixation	ia / NH₃ out must be col ate (ions)	rrect including [max 3]
		001			
					[Total: 10]