



## **Cambridge International Examinations**

Cambridge International Advanced Subsidiary and Advanced Level

BIOLOGY 9700/13

Paper 1 Multiple Choice May/June 2014

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

## **READ THESE INSTRUCTIONS FIRST**

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO NOT WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

## Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

Electronic calculators may be used.



1 The eyepiece lens of a microscope is fitted with an eyepiece graticule.

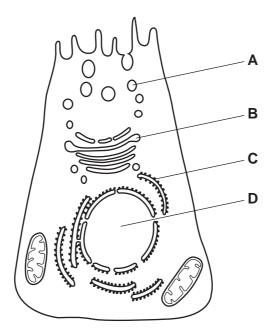
Which statements about the graticule are correct?

- 1 It allows you to measure the actual length of cells.
- 2 It allows you to draw cells with correct proportions.
- 3 It changes in size as the objective lens changes from  $\times 10$  to  $\times 40$ .
- **A** 1, 2 and 3
- **B** 1 and 3 only
- C 1 only
- **D** 2 only
- 2 The diameter of living cells varies considerably.

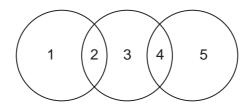
The diameter of a typical eukaryotic cell is  $1.5 \times 10^1 \, \mu m$ . The diameter of a typical prokaryotic cell is  $7.5 \times 10^2 \, nm$ .

Using these measurements, what is the maximum number of each cell type which could fit along a line 1 cm long?

|   | number of white blood cells | number of<br>Streptococcus cells |
|---|-----------------------------|----------------------------------|
| Α | $6.7 \times 10^4$           | $1.3 \times 10^2$                |
| В | $6.7 \times 10^{3}$         | 1.3 × 10 <sup>5</sup>            |
| С | $6.7 \times 10^{2}$         | 1.3 × 10 <sup>4</sup>            |
| D | $6.7 \times 10^{1}$         | 1.3 × 10 <sup>3</sup>            |


3 In order to complete the sentence below, what is the correct process and cell structure?

Cells which have a high rate of ......1..... will have many ......2......


|   | 1                                  | 2                       |  |
|---|------------------------------------|-------------------------|--|
| Α | DNA replication                    | lysosomes               |  |
| В | exocytosis                         | ocytosis Golgi vesicles |  |
| С | facilitated diffusion mitochondria |                         |  |
| D | phospholipid production            | ribosomes               |  |

**4** A cell secreting glycoproteins is supplied with radioactively-labelled glucose which is detected in the cytoplasm first.

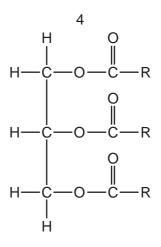
In which organelle would radioactively-labelled glucose be detected next?



**5** The diagram shows some similarities between chloroplasts, mitochondria and typical prokaryotes.



Which row is correct?


|   | 1            | 2             | 3            | 4             | 5            |
|---|--------------|---------------|--------------|---------------|--------------|
| Α | chloroplasts | circular DNA  | mitochondria | linear DNA    | prokaryotes  |
| В | mitochondria | linear DNA    | chloroplasts | 70S ribosomes | prokaryotes  |
| С | mitochondria | 70S ribosomes | chloroplasts | linear DNA    | prokaryotes  |
| D | prokaryotes  | 70S ribosomes | mitochondria | 70S ribosomes | chloroplasts |

**6** A student carried out four tests for biological molecules on a solution. The results are shown in the table.

| test for biological molecule | observation |
|------------------------------|-------------|
| iodine solution              | orange      |
| biuret                       | blue        |
| Benedict's                   | orange      |
| emulsion                     | clear       |

Which molecules are present in this solution?

2



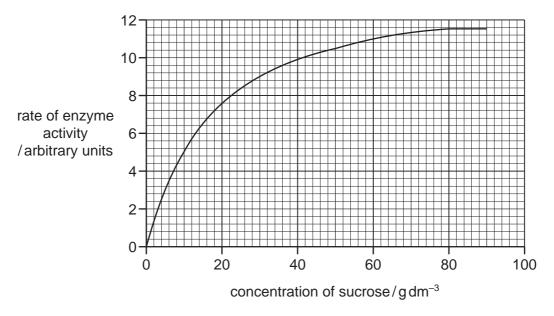
**A** 1 and 3

**B** 1 and 4

**C** 2 and 3

**D** 3 and 4

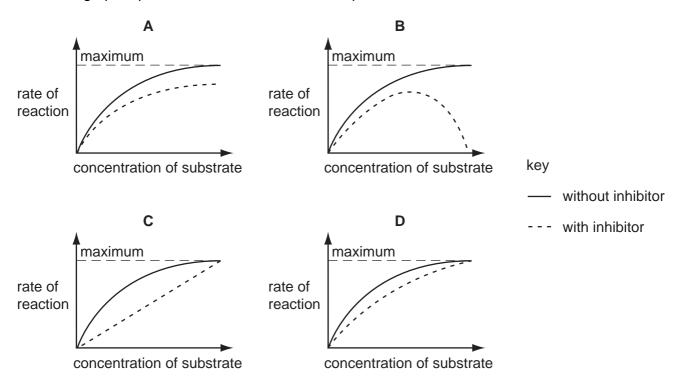
| 7  | Wh   | ich bond                           | s will be bro                         | oken when a                                       | molecul                    | e of amylo        | ose is hydro  | olysed?         |                                             |
|----|------|------------------------------------|---------------------------------------|---------------------------------------------------|----------------------------|-------------------|---------------|-----------------|---------------------------------------------|
|    |      | 1                                  | α1,4                                  |                                                   |                            |                   |               |                 |                                             |
|    |      | 2                                  | β1,4                                  |                                                   |                            |                   |               |                 |                                             |
|    |      | 3                                  | α1,6                                  |                                                   |                            |                   |               |                 |                                             |
|    |      | 4                                  | β1,6                                  |                                                   |                            |                   |               |                 |                                             |
|    | A    | 1 and 3                            | В                                     | 2 and 4                                           | С                          | 1 only            | D             | 2 only          |                                             |
| 8  | Wh   | ich state                          | ment descr                            | ibes how the                                      | molecul                    | ar structu        | re of starch  | is suited to    | its function?                               |
|    | A    | Amylos<br>transpo                  |                                       | anched struct                                     | ure and                    | amyloped          | ctin is coile | d to give a c   | ompact molecule for                         |
|    | В    | In the been energy.                |                                       | of amylose a                                      | nd amyl                    | opectin, r        | nany conde    | ensation read   | ctions release stored                       |
|    | С    | In the fo                          |                                       | amylose and                                       | d amylor                   | pectin, ma        | any hydroly   | sis reactions   | allow the release of                        |
|    | D    | The am cell.                       | ıylose-amyl                           | opectin comp                                      | olex is in                 | isoluble a        | nd does no    | ot affect the v | vater potential of the                      |
| 9  | Wh   | ich comp                           | parative sta                          | tements cond                                      | erning b                   | oiological        | molecules     | are correct?    |                                             |
|    |      | 1                                  | hydrophol                             |                                                   | wherea                     | s a haem          | oglobin m     |                 | y amino acids with<br>globular protein with |
|    |      | 2                                  | proportion                            | •                                                 | e and o                    | $\alpha$ -glucose |               | •               | production of equal cellulose hydrolysis    |
|    |      | 3                                  |                                       |                                                   |                            | •                 |               |                 | reen two α-glucose formed between an        |
|    |      |                                    |                                       | molecule an                                       | -                          | icose mol         |               |                 | ionned between an                           |
|    | Α    | 1 and 2                            | $\alpha$ -glucose                     | molecule an                                       | -                          | ucose mol         |               | 3 only          | iornica between an                          |
| 10 |      |                                    | $\alpha$ -glucose                     |                                                   | d a β-glι<br><b>C</b>      | 2 only            | ecule.        |                 | ionned between an                           |
| 10 |      | riglycerid                         | α-glucose <b>B</b> e molecule         | 1 and 3<br>s, where are                           | d a β-glu  C  double t     | 2 only            | ecule.        |                 | ionned between an                           |
| 10 | In t | riglycerid<br>betweei              | α-glucose  B e molecule n fatty acids | 1 and 3                                           | d a β-glu<br>C<br>double t | 2 only            | ecule.        |                 | iornica between an                          |
| 10 | In t | riglycerid<br>betweei<br>within fa | α-glucose  B e molecule n fatty acids | 1 and 3 s, where are s and glycero nd within glyc | d a β-glu<br>C<br>double t | 2 only            | ecule.        |                 | ionned between an                           |


11 The diagram represents an amino acid.

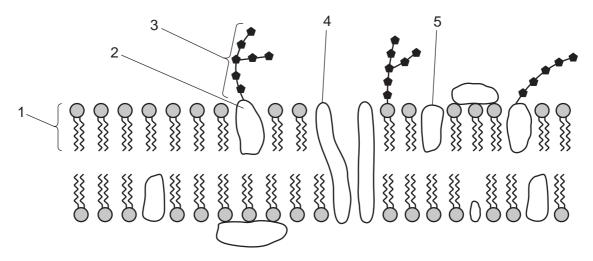
R represents a variable side chain.

Which is **not** a possible side chain?

- A CH<sub>3</sub>
- B CH<sub>2</sub>CH<sub>2</sub>SCH<sub>3</sub>
- C CH<sub>2</sub>CONH<sub>2</sub>
- **D** HOCH<sub>2</sub>CH(OH)CH<sub>2</sub>OH
- 12 Which of the statements describe some roles of enzymes?
  - 1 catalyse the breakdown of larger molecules into smaller ones
  - 2 lower the activation energy required to start a reaction
  - 3 increase the number of collisions between molecules
  - 4 supply the activation energy required to start a reaction
  - **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 3
- **D** 3 and 4


13 The graph shows the rate of activity of the enzyme sucrase plotted against the concentration of sucrose.




Why does the rate of enzyme activity remain constant from 80 – 90 g dm<sup>-3</sup>.

- A All the enzyme has been inhibited.
- **B** All the substrate has been used up.
- **C** The concentration of the enzyme is limiting the rate.
- **D** The concentration of the substrate is limiting the rate.

**14** Which graph represents the action of a non-competitive inhibitor?



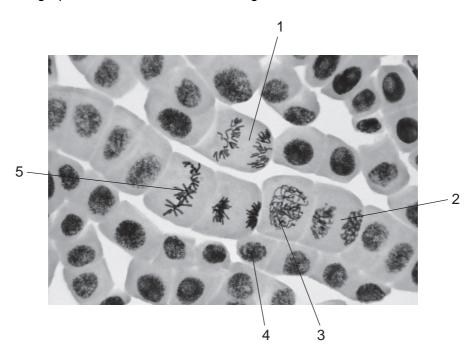
15 The diagram shows part of a cell surface membrane.



Which molecules have both hydrophobic and hydrophilic regions?

- **A** 1, 2, 4 and 5
- **B** 1, 3 and 5
- C 1 and 5 only
- **D** 2 and 4 only

**16** One type of antigen is formed by a reaction between two different molecules.


Apart from oxygen, which other elements are found in this antigen?

- A carbon and hydrogen only
- B hydrogen and nitrogen only
- C carbon, nitrogen and phosphorus
- **D** carbon, hydrogen, nitrogen and sulfur
- 17 What are the features of facilitated diffusion?
  - 1 It uses protein channels in the membrane and is driven by the energy from ATP.
  - 2 It moves molecules from regions of higher concentration to lower concentration and is driven by the kinetic energy of the molecules which are diffusing.
  - 3 It uses protein channels in the membrane, and the maximum rate of diffusion depends on the number of these channels.
  - A 1 and 2 only
  - **B** 1 and 3 only
  - C 2 and 3 only
  - **D** 1, 2 and 3

**18** Single-celled animals that live in fresh water have a vacuole that contracts regularly to remove excess water. Single-celled plants that live in fresh water do not have a similar vacuole.

Which statement explains why these animals need this vacuole but plants do not?

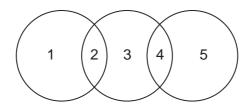
- A Plant cell cytoplasm and animal cell cytoplasm both have a lower water potential than fresh water.
- **B** Plant cell sap has the same water potential as fresh water, animal cytoplasm has a lower water potential than fresh water.
- **C** Plant cell walls are impermeable to water, animal cell surface membranes are permeable to water.
- **D** Plant cell walls restrict the entry of water, animal cell membranes allow the entry of water.
- 19 During which process does only mitosis occur?
  - A the production of antibodies from B-lymphocyte memory cells
  - **B** the production of cancerous tissue in alveoli
  - **C** the production of gametes
  - **D** the production of root hairs
- **20** The photomicrograph shows cells in different stages of mitosis.



In which order do these stages occur?

- **A**  $3 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 4$
- **B**  $3 \rightarrow 5 \rightarrow 1 \rightarrow 2 \rightarrow 4$
- **C**  $4 \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow 2$
- **D**  $4 \rightarrow 5 \rightarrow 1 \rightarrow 2 \rightarrow 3$

- 21 The statements are about genes and proteins involved in breast cancer.
  - The protein coded by the BRAC1 gene inhibits the growth of breast cancer cells.
  - The protein coded by the *RAD51* gene is required for the repair of damaged DNA.


Which combination of genes is most likely to result in breast cancer?

|   | gene  |   |            |
|---|-------|---|------------|
|   | BRAC1 |   |            |
| Α | ✓     | ✓ | key        |
| В | X     | ✓ | ✓ =        |
| С | ✓     | x | <b>x</b> = |
| D | X     | X |            |

✓ = normal active gene

x = mutated gene

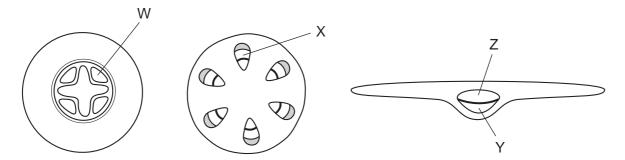
22 The diagram shows some relationships between different nucleic acid bases.



Which row is correct?

|   | 1        | 2          | 3        | 4          | 5       |
|---|----------|------------|----------|------------|---------|
| Α | adenine  | purine     | cytosine | pairs with | guanine |
| В | cytosine | purine     | guanine  | pairs with | uracil  |
| С | guanine  | pairs with | cytosine | pyrimidine | thymine |
| D | thymine  | pairs with | uracil   | pyrimidine | adenine |

23 The diagram shows the structures of some drugs that have a similar structure to nucleotides. The presence of these drugs reduces nucleic acid synthesis.


$$H_2N$$
 $H_2N$ 
 $H_2N$ 
 $H_2N$ 
 $H_3N$ 
 $H_4N$ 
 $H_5N$ 
 $H_5N$ 
 $H_5N$ 
 $H_7N$ 
 $H_7N$ 

Which statement explains how these drugs reduce nucleic acid synthesis?

- A Increasing the concentration of these drugs results in the increased length of the nucleic acid.
- **B** They are non-competitive inhibitors of the enzymes that catalyse the synthesis of DNA or RNA.
- **C** They bind to pyrimidine nucleotides and the base pair is the wrong size.
- **D** They replace purine nucleotides causing the synthesis of incomplete nucleic acids.
- 24 What terminates the formation of a polypeptide chain during protein synthesis in cells?
  - A when a 'stop' codon is reached on the mRNA molecule
  - **B** when a 'stop' codon is reached on the tRNA molecule
  - **C** when the ribosome reaches the end of the mRNA molecule
  - **D** when the ribosome reaches the end of the tRNA molecule
- 25 In which combination of environmental conditions are the stomata of a plant most likely to close?

|   | atmospheric<br>humidity | soil water<br>potential | wind<br>speed |
|---|-------------------------|-------------------------|---------------|
| Α | high                    | low                     | high          |
| В | high                    | low                     | low           |
| С | low                     | high                    | high          |
| D | low                     | low                     | high          |

**26** The diagrams show some tissue types, in plant organs.



Which row identifies the tissue types?

|   | W      | Х      | Y      | Z      |
|---|--------|--------|--------|--------|
| Α | phloem | phloem | phloem | xylem  |
| В | phloem | xylem  | phloem | xylem  |
| С | xylem  | phloem | xylem  | phloem |
| D | xylem  | xylem  | phloem | xylem  |

27 Which features apply to both sieve tube elements and xylem vessel elements?

1 no cytoplasm

2 no end walls

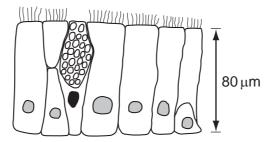
3 no nucleus

**A** 1, 2 and 3 **B** 1 and 3 only **C** 2 only **D** 3 only

**28** What changes occur to the water potential and the volume of liquid in the **phloem** when carbohydrate is moved into a sink?

|   | water potential | volume of liquid |
|---|-----------------|------------------|
| Α | lowers          | decreases        |
| В | lowers          | increases        |
| С | raises          | decreases        |
| D | raises          | increases        |

29 Some plant species can take up heavy metal contaminants that are dissolved in soil water and then transport them within the plant. Within plant cells, the heavy metals accumulate mainly in the vacuole.


Which are valid suggestions about the transport and accumulation of heavy metals?

- 1 After initial entry into the root, some of the heavy metals can pass through the tonoplast to be stored in the vacuole of cortical cells.
- 2 The heavy metals take an apoplastic pathway in the xylem but at the endodermis must take a symplastic pathway.
- 3 The rate of accumulation of the heavy metals in leaf cells will be faster at night, when photosynthesis is not occurring, than during the day.
- 4 The presence of the heavy metal will inhibit active transport, causing the transpiration stream to slow down and reduce the rate of transpiration.

| <b>A</b> 1 and 2 <b>B</b> 1 and 4 | С | 2 and 3 | D | 3 and 4 |
|-----------------------------------|---|---------|---|---------|
|-----------------------------------|---|---------|---|---------|

- **30** Which process can be carried out by a mature red blood cell?
  - A active transport
  - **B** cell division
  - C phagocytosis
  - **D** protein synthesis
- **31** Which is **not** a correct statement about phagocytes?
  - A They are white blood cells with a lobed nucleus.
  - **B** They have many lysosomes containing hydrolytic enzymes.
  - **C** They have many mitochondria to produce ATP for endocytosis.
  - **D** They provide specific defence against disease-causing organisms.
- **32** Which of the following are found in blood and lymph and tissue fluid?
  - 1 carbon dioxide
  - 2 glucose
  - 3 white blood cells
  - 4 fatty acids
  - **A** 1, 2, 3 and 4 **B** 1, 2 and 3 only **C** 1, 3 and 4 only **D** 2 and 4 only


**33** The diagram shows a section through a type of epithelium.



Where is this type of epithelium found in the respiratory system?

|   | trachea | bronchus | all bronchioles |             |
|---|---------|----------|-----------------|-------------|
| Α | ✓       | ✓        | ✓               | key         |
| В | ✓       | ✓        | X               | ✓ = present |
| С | ✓       | x        | ✓               | x = absent  |
| D | X       | ✓        | ✓               |             |

34 The diagram shows a magnified section of part of the lungs containing specialised tissues.

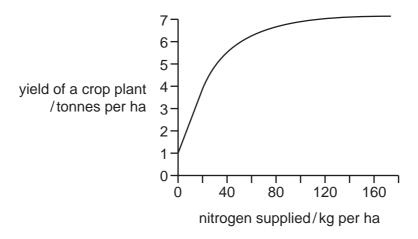


Where are there a high proportion of carbonic anhydrase, HCO<sub>3</sub><sup>-</sup> ions and lysosomes?

|   | contains high proportion of |                                    |           |
|---|-----------------------------|------------------------------------|-----------|
|   | carbonic<br>anhydrase       | HCO <sub>3</sub> <sup>-</sup> ions | lysosomes |
| Α | 1                           | 3                                  | 4         |
| В | 2                           | 4                                  | 5         |
| С | 3                           | 5                                  | 6         |
| D | 4                           | 6                                  | 1         |

35 Which row correctly identifies the effects of carbon monoxide, nicotine and tar?

|   | effect                |                      |                              |  |
|---|-----------------------|----------------------|------------------------------|--|
|   | raises blood pressure | causes gene mutation | reduces oxygenation of blood |  |
| Α | carbon monoxide       | nicotine             | tar                          |  |
| В | nicotine              | nicotine             | carbon monoxide              |  |
| С | nicotine              | tar                  | carbon monoxide              |  |
| D | tar                   | carbon monoxide      | nicotine                     |  |


- 36 Which factors may increase the risk of cholera in refugee camps?
  - 1 no refrigeration of food
  - 2 increase in the number of people
  - 3 lack of hand washing facilities
  - **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- 37 What are antigens?
  - A non-self macromolecules found only on bacteria that trigger the formation of antibodies
  - **B** non-self macromolecules that trigger an immune response
  - **C** proteins that consist of two light and two heavy polypeptide chains
  - D self macromolecules embedded in B-lymphocyte cell membranes
- **38** A total of  $3 \times 10^6 \, \text{kJ} \, \text{m}^{-2} \, \text{yr}^{-1}$  is available from the producers in an ecosystem.

In theory, how much of this energy would be available to tertiary consumers?

- **A**  $3 \times 10^4 \, \text{kJ m}^{-2} \, \text{vr}^{-1}$
- **B**  $3 \times 10^3 \, \text{kJ m}^{-2} \, \text{vr}^{-1}$
- $C = 3 \times 10^2 \, \text{kJ m}^{-2} \, \text{vr}^{-1}$
- **D**  $3 \times 10^{1} \, \text{kJ m}^{-2} \, \text{vr}^{-1}$
- 39 In a food chain, which link involves the least efficient energy transfer?
  - A Bull fishes feed on small crustacea.
  - **B** Herons feed on bull fishes.
  - **C** Mangrove plants trap sunlight during photosynthesis.
  - **D** Small crustacea feed on dead mangrove leaves.

**40** The growth of crop plants is often limited by the availability of nitrogen in the soil.

The graph shows the results of an investigation into the yield of a crop plant, with increasing levels of nitrogen supplied.



Which of the following best explains the shape of this curve?

|   | protein synthesis | DNA synthesis |
|---|-------------------|---------------|
| Α | increases         | no effect     |
| В | no effect         | no effect     |
| С | increases         | increases     |
| D | no effect         | increases     |

Copyright Acknowledgements:

Question 20

© M I WALKER/SCIENCE PHOTO LIBRARY

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.