MARK SCHEME for the May/June 2013 series

9700 BIOLOGY

9700/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	23

Mark scheme abbreviations:

; / R	separates marking points alternative answers for the same point reject
Α	accept (for answers correctly cued by the question, or by extra guidance)
AW	alternative wording (where responses vary more than usual)
<u>underline</u>	actual word given must be used by candidate (grammatical variants excepted)
max	indicates the maximum number of marks that can be given
ora	or reverse argument
mp	marking point (with relevant number)
ecf	error carried forward
I	ignore

Pa	ge 3	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9700	23
1 (a)	B = (inte	proplast ; A granum / grana prcellular) air space ; leolus ; A nucleus		[3]
(b)	9 (μm) ;; award o or corre	ks for correct answer ne mark if not to nearest micrometre, 9.3/9.28 ct measurement incorrectly converted but correct formula 66 mm ÷ 7000	a used	[2]
(c)	A lių 2 pho acic 3 ref. thei 4 prot 5 mar 6 exa 7 <i>idea</i>	spholipid bilayer ; bid bilayer spholipids have, phosphate / hydrophilic, heads, and, h I chains ; to, labile nature of bilayer structure / phospholipid (mol r monolayer) ; tein molecules, interspersed/scattered/not a complete la hy/AW, different/AW (protein molecules) ; mple of type of protein ; a of (most) proteins, moving/not in fixed position ; rence to cholesterol ;	ecules) moving	-
(d)	2 apo 3 ref. mer R o 4 sym 5 via 6 ref.	to movement, down water potential gradient/from high(e plastic/cell wall, pathway from xylem to cell walls of (pali to osmosis ; <i>in context of</i> movement, into cell mbrane/through tonoplast, smosis from xylem to vacuole uplastic/cytoplasmic, pathway (within cell) ; plasmodesmata ; <i>in context of water arriving from adjace</i> to channel proteins/aquaporins ; ites/named, in vacuole ;	isade mesophy /through cell	

[Total: 12]

Page 4			Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2013	9700	23
2	(a) (i)	A pla (ass large avail ref. t ATP	have machinery for protein synthesis/AW ; ant/animal, cells have RER umption that) cells will continue to produce protein at hig e number of/many/AW, ribosomes ; lable supply of/AW, amino acids ; to presence of tRNA molecules ; available ; to easier to harvest high levels of protein ;	gh rate ;	[max 2]
	(ii)	so th	<i>that</i> any added mRNA, has easier access to/can reach nat the cell's own, DNA/mRNA can be accessed/AW ; er to, harvest/extract, protein products ;	ı, ribosomes/R	ER; [max 1]
	(iii)	unwa idea	the desired protein is produced/AW; ora anted protein does not have to be separated from desire <i>that</i> inefficient process if translation machinery used to s proteins may, inhibit/affect/hinder/AW, process;	•	proteins ; [max 1]
	(iv)	R remediates for the second se	to ribosome function not altered ; f. to prokaryotic and eukaryotic ribosomes being the sar hanism of translation/described, is the same in all cells tRNA can respond to introduced mRNA rpes of cells use mRNA for protein synthesis ; NA only has one role ; etic code/codons, are the same in all cells ; enetic code is universal NA, contains only exons/introns removed, so translation	;	[max 2]
	(rib (so	osom me) a	structure/rRNA, (of ribosomes) ; es), larger/80S, in eukaryotes <i>or</i> smaller/70S in prokar ttached to/AW, (eternal surface of) RER in eukaryotes und in cytoplasm in prokaryotes	•	[max 2]
	sor ide few no oth org ref.	ne, rib a <i>that</i> / reduc er, co anelle to dif y be a	anelles/components, damaged <i>or</i> whole cell all organe bosomes/RER, lost/damaged ; cell-free system is disorganised ; ora nino acids available ; ora ced, respiration ; AW mponents/AW, required are, lost/at lower levels ; es/components, not replaced ; ora ficulty in creating identical conditions to cell environmen able to use cells that can replicate (hence continuous pro	t;	[max 1] [Total: 9]

GCE AS/A LEVEL – May/June 2013 9700 23 3 (a) (i) A = denitrification / reduction ; B = nitrogen fixation / lightning ; C = nitrification / oxidation [3] (ii) decomposition / decay ; A reference to decomposers saprotrophs/bacteria / fungi ; A detrifivores digest/breakdown / hydrolyse, organic nitrogen / protein / amino acids / urea ; protease / urease ; deamination ; production of ammonium (ions) / ammonification ; nitrification / ammonium (ions) to nitrate (ions) ; accept correct formulae for ammonium ions, nitrite ions and nitrate ions [max 3] (b) (i) phosphate any one relevant ; e.g. part of structure of AMP / ADP / ATP nucleotide nucleic acid / DNA / RNA / polynucleotide phospholipid A phospholipid bilayer phosphorylation / enzyme activation bone tissue [max 4] nitrate any one relevant ; e.g. (nitrogen for) amino acids / proteins / enzymes / named (e.g. haemoglobin) AMP / ADP / ATP nucleotide nucleic acid / DNA / RNA / polynucleotide named nitrogen base (adenine / cytosine / thymine / uracil / guanine)	Page 5 Mark Scheme Syllabus Page 5					
 B = nitrogen fixation /lightning; C = nitrification / oxidation (ii) decomposition / decay; A reference to decomposers saportophs / bacteria / fungi; A detrifivores digest/breakdown/hydrolyse, organic nitrogen/protein/amino acids/urea; protease/urease; deamination; production of ammonium (ions) / ammonification; nitrification / ammonium (ions) to nitrate (ions); accept correct formulae for ammonium ions, nitrite ions and nitrate ions [max 3] (b) (i) phosphate any one relevant; e.g. part of structure of AMP / ADP / ATP nucleotide nucleic acid / DNA / RNA / polynucleotide phospholipid A phospholipid bilayer phospholipid A phospholipid bilayer phospholipid bilayer picstases (ii) 1 growth linked to, increase in cell size / cell number; 2 growth linked to, increase in cell size / cell number; 3 increases energy available as food for next trophic level; 4 nitrogen is in, amino acids / proteins, for growth; 5 ATP (containing phosphate) required for, transcription / protein synthesis / enzyme synthesis / anabolic reactions/ growth; 						
 A reference to decomposers saprotrophs/bacteria/fungi; A detritivores digest/breakdown/hydrolyse, organic nitrogen/protein/amino acids/urea; protease/urease; deamination; production of ammonium (ions)/ammonification; nitriffication/ammonium (ions) to nitrate (ions); accept correct formulae for ammonium ions, nitrite ions and nitrate ions [max 3] (b) (i) phosphate any one relevant; e.g. part of structure of AMP/ADP/ATP nucleotide nucleic acid/DNA/RNA/polynucleotide phospholipid A phospholipid A phospholipid bilayer phospholipid intrate any one relevant; e.g. (nitrogen for) amino acids/proteins/enzymes/named (e.g. haemoglobin) AMP/ADP/ATP nucleotide nucleic acid/DNA/RNA/polynucleotide named nitrogen base (adenine/cytosine/ thymine/rADP/ATP nucleotide nucleic acid/DNA/RNA/polynucleotide named nitrogen base (adenine/cytosine/ thymine/uracif/guanine) (some) phospholipids [2] (ii) 1 growth linked to, increase in cell size/cell number; 2 growth linked to, increase in biomass/reproduction; 3 increases energy available as food for next trophic level; 4 nitrogen is in, amino acids/proteins, for growth; 5 ATP (containing phosphate) required for, transcription/protein synthesis/enzyme synthesis/anabolic reactions/growth; 	3 (a) (i)	B =	nitrogen fixation / lightning;		[3]	
 any one relevant ; e.g. part of structure of AMP/ADP/ATP nucleotide nucleic acid/DNA/RNA/polynucleotide phospholipid A phospholipid bilayer phosphorylation/enzyme activation bone tissue <i>nitrate</i> any one relevant ; e.g. (nitrogen for) amino acids/proteins/enzymes/named (e.g. haemoglobin) AMP/ADP/ATP nucleotide <li< td=""><th>(ii)</th><td>A re sapr A de dige prote dear proc nitrif</td><td>ference to decomposers rotrophs/bacteria/fungi ; etritivores st/breakdown/hydrolyse, organic nitrogen/protein/ami ease/urease ; mination ; luction of ammonium (ions)/ammonification ; fication/ammonium (ions) to nitrate (ions) ;</td><td></td><td></td></li<>	(ii)	A re sapr A de dige prote dear proc nitrif	ference to decomposers rotrophs/bacteria/fungi ; etritivores st/breakdown/hydrolyse, organic nitrogen/protein/ami ease/urease ; mination ; luction of ammonium (ions)/ammonification ; fication/ammonium (ions) to nitrate (ions) ;			
 any one relevant ; e.g. (nitrogen for) amino acids/proteins/enzymes/named (e.g. haemoglobin) AMP/ADP/ATP nucleotide nucleic acid/DNA/RNA/polynucleotide named nitrogen base (adenine/cytosine/thymine/uracil/guanine) (some) phospholipids [2] (ii) 1 growth linked to, increase in cell size/cell number ; 2 growth linked to, increase in biomass/reproduction ; 3 increases energy available as food for next trophic level ; 4 nitrogen is in, amino acids/proteins, for growth ; 5 ATP (containing phosphate) required for, transcription/protein synthesis/enzyme synthesis/anabolic reactions/growth ; 	(b) (i)	any e.g. AMF nucl nucl phos A ph phos	one relevant ; part of structure of P/ADP/ATP eotide eic acid/DNA/RNA/polynucleotide spholipid nospholipid bilayer sphorylation/enzyme activation			
 2 growth linked to, increase in biomass/reproduction; 3 increases energy available as food for next trophic level; 4 nitrogen is in, amino acids/proteins, for growth; 5 ATP (containing phosphate) required for, transcription/protein synthesis/enzyme synthesis/anabolic reactions/growth; 		any e.g. AMF nucl nucl thyn	one relevant ; (nitrogen for) amino acids/proteins/enzymes/named (P/ADP/ATP eotide eic acid/DNA/RNA/polynucleotide named nitrogen ba nine/uracil/guanine)			
 7 nitrogen in membrane proteins/phosphate in membrane phospholipids; 8 (cell division and), DNA, synthesis/replication; 9 <i>idea that</i> more biomass (per unit time) returned to soil; 10 AVP; e.g. ref. to phosphate taken up by plants and passed into food chain; [max 3] 	(ii)	2 3 4 5 6 7 8 9	growth linked to, increase in biomass/reproduction; increases energy available as food for next trophic leve nitrogen is in, amino acids/proteins, for growth; ATP (containing phosphate) required for, transcription/ synthesis/anabolic reactions/growth; <i>idea that,</i> growth of cells/cell division, requires membran nitrogen in membrane proteins/phosphate in membrane (cell division and), DNA, synthesis/replication; <i>idea that</i> more biomass (per unit time) returned to soil;	protein synthesi ne synthesis ; e phospholipids	;	
		. 2	,		[Total: 11]	

[Total: 11]

	Pa	ige 6		Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2013	9700	23
4	(a)	use o use o	first) of, co of co	valid ; appearance of (brown) colour olour standards/colour charts olorimeter se photography/video		[1]
	(b)			echol for substrate throughout action 0 au, no substrate to act on / AW ;		
		subs prese few o rate i comp one o V _{max}	trate ence collis incre olexe data reac	ate concentrations lower than 5mM e (concentration) is limiting (factor in rate of reaction) ; e of free active sites/enzyme is in excess ; sions between enzyme and substrate ; eases with substrate concentration as more, active sites es can form ; quote to support response shed/rate becomes maximum, at 4.5–5 mM substrate concentration stant/levels out/AW, from 4.5–5 mmol substrate concent	ncentration;	1/E-S
		enzy all ac	me ctive	ate concentrations greater than 5mM (concentration) becomes limiting (factor) ; sites, saturated/occupied ; er increase in substrate concentation does not increase	rate ;	[max 5]
	(c)			e always lower than that with no inhibitor ; <i>must be simi</i> e reaches the maximum ; A curve heading to maximur		[2]
		() k	(so) blocl redu AVP	A/ inhibitor, similar shape to, substrate / catechol ; binds to active site ; ks access to substrate / fewer (successful) enzyme-subs ces rate of, reaction / conversion of substrate to product ; e.g. inhibitor has a greater effect on rate at lower subs V _{max} reached at higher substrate concentrations inhibitor forms same interactions with R-groups in active	; trate concentration	ons [max 2]
	(d)	(acid furthe chan	l so) er de ige c	work in a limited pH range / either side of optimum pH presence of H ⁺ ions, partially denatures / denatures (so etail ; e.g. ref. to breaking ionic or hyrdrogen bonds of active site shape means substrate can no longer fit ; g. ref. to antioxidant effect of, lemon juice / citric acid / vi	me), enzymes ;	[max 2]

[Total: 12]

P	age 7	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9700	23
(a)	production replacing repair (o R repair asexual	by increase in cell number) ; on of genetically identical cells ; g (damaged) cells ; f tissue) ; <i>allow 'regeneration' if mp3 and mp4 not av</i> r cells reproduction ; g A vegetative propagation	varded	[max
(b)	one tick	in each box ;		[
				L
(c)	chromos spindle f centriole R sides/ disappea disasser	nce of chromosomes/condensation of chromatin/AN somes visible as two, sister chromatids/chromatids ja formation/spindle fibres form/microtubules assemble es, move to/reach, opposite <u>poles</u> ; 'ends arance of nucleolus ; mbly/breakdown of, nuclear envelope ; ar membrane	oined by a centrom	
	A nuclea	ar membrane		[max
(d)	uncontro ignore (prophase, will begin again, too soon/immediately; olled/repeated, cell division/mitosis; risk of), tumour formation/cancerous growth onsequences on the timing of the cell cycle;		[max
				[Total: 1
(a)	result of	(mainly) linked to habits during life of person/AW ; choices made by person/AW ;		
	example e.g. (tob	acco) smoking/exposure to asbestos at work		[max
(b)	transmis	Morbilli/measles ssion: aerosol, infection/transmission <i>or</i> droplet, infection ol route described from infected to uninfeccted	ction/transmission	; [.
(c)	occurs ; unvaccir reduction percenta change existing	I), visitors/immigrants/returning residents, from nated people returning from travel abroad ; n in vaccination rates ; age cover too low ; in reporting pattern ; vaccine no longer, effective/AW ;	countries where	measles
	-	ation of virus produces new antigens, vaccines ineffe		Imov
	morease	in malnourished children, no immune response to v	accine	[max
				[Total: