Electricity and chemistry

Question Paper 4

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Topic	Electricity and chemistry
Sub-Topic	
Paper	(Extended) Theory
Booklet	Question Paper 4

TimeAllowed: 68 minutes

Score: / 56

Percentage: /100

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- Aluminium is extracted by the electrolysis of a molten mixture that contains alumina, which is aluminium oxide, Al_2O_3 .
 - (a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences.

The	dissolves to give a solution of	
The	does not dissolve and can be removed	by[4]
Compl	lete the labelling of the diagram.	
	waste gases	
	·····	— carbon anode (+) mixture of aluminium oxide and
	·	[4]
The io	ns that are involved in the electrolysis are $A\hat{l}^{3+}$ and O^{2-} .	

(c)

(b)

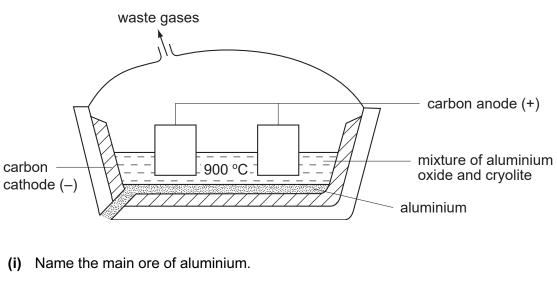
(i) Write an equation for the reaction at the cathode.

(ii) Explain how carbon dioxide is formed at the anode.

[2]

[2]

(d)	Giv	e an explanation for each of the following.	
	(i)	Aluminium is used extensively in the manufacture of aircraft.	
			[1]
	(ii)	Aluminium is used to make food containers.	
			[2]
	(iii)	Aluminium electricity cables have a steel core.	
			[1]
		[Total:	16]


Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

² The position of aluminium in the reactivity series of metals is shown below.

magnesium aluminium zinc copper

(a) Aluminium is extracted by the electrolysis of its molten oxide.

	(i)	Name the main ore of aluminium.	
			[1]
	(ii)	Why does the molten electrolyte contain cryolite?	
			[1]
(iii)	Oxygen is produced at the positive electrode (anode). Name another gas which given off at this electrode.	n is
			[1]
(b)	Alu	minium reacts very slowly with aqueous copper(II) sulphate.	
		$2Al(s) + 3CuSO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3Cu(s)$	
	(i)	Which of the two metals has the greater tendency to form ions?	
			[1]
	(ii)	Describe what you would see when this reaction occurs.	
			[1]
(iii)	Explain why aluminium reacts so slowly.	

(c) Complete the following table by writing "reaction" or "no reaction" in the spaces provided.

oxide	type of oxide	reaction with acid	reaction with alkali
magnesium			
aluminium	am		

[2]

(d)	Predi	ct the equations for the	decomposition of the	following aluminium o	compounds.	
	(i)	A <i>l</i> (OH) ₃ →		+		[2]
	(ii)	aluminium nitrate —		+	+	
						12

3	(a		oper has the structure of a typical metal. It has a lattice of positive ions and a "so nobile electrons. The lattice can accommodate ions of a different metal.	эа"
		Giv	e a different use of copper that depends on each of the following.	
		(i)	the ability of the ions in the lattice to move past each other	
				[1]
		(ii)	the presence of mobile electrons	
				[1]
	((iii)	the ability to accommodate ions of a different metal in the lattice	
				[1]
	(b)		ueous copper(II) sulphate solution can be electrolysed using carbon electrodes. Ts present in the solution are as follows.	he
			$Cu^{2+}(aq),$ $_{4}^{2-}(aq),$ $^{+}(aq),$ $^{-}(aq)$	
		(i)	Write an ionic equation for the reaction at the negative electrode (cathode).	
				[1]
		(ii)	A colourless gas was given off at the positive electrode (anode) and the solut changes from blue to colourless.	ion
			Explain these observations.	
				[2]

(c)	Aqueous copper(II) sulphate can be electrolysed using copper electrodes. Treaction at the negative electrode is the same but the positive electrode becomes maller and the solution remains blue.	
	(i) Write a word equation for the reaction at the positive electrode.	
		[1]
	(ii) Explain why the colour of the solution does not change.	
		[2]
(iii) What is the large scale use of this electrolysis?	
		[1]

Hydrogen can be manufactured from methane by steam reforming.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

The reaction is carried out using a nickel catalyst at temperatures between 700 °C and 1100 °C and using a pressure of one atmosphere.

The forward reaction is endothermic.

(a)	Wh	at is meant by the term <i>catalyst</i> ?	
			[2]
(b)	Sug	ggest two reasons why a temperature lower than 700°C is not used.	
			[2]
(c)	Sug	ggest one advantage of using a pressure greater than one atmosphere.	
			[1]
(d)	Sug	gest one disadvantage of using a pressure greater than one atmosphere.	[1]
(-)	Lha		
(e)		drogen can also be manufactured by electrolysis. The electrolyte is concentrated aquectium chloride. The electrodes are inert.	ous
	The	e products of electrolysis are hydrogen, chlorine and sodium hydroxide.	
	(i)	electrolysis.	
			[2]
	(ii)	Name a substance that can be used as the inert electrodes.	[41
((iii)	Write an ionic half-equation for the reaction in which hydrogen is produced.	[1]
			[1]
	(iv)	Where is hydrogen produced in the electrolytic cell?	F41

(v)	Describe a test for chlorine.	
	test	
	result	
		[2]
	· · · · · · · · · · · · · · · · · · ·	/ing
	sodium chloride + water \rightarrow sodium hydroxide + hydrogen + chlorine	
Cor	nstruct a chemical equation to represent this reaction. Do not include state symbols.	
		[2]
Sta	ite one use of	
chlo	orine,	
sod	lium hydroxide,	
hyd	drogen	
		[3]
	The woo	test result The electrolysis of concentrated aqueous sodium chloride can be represented by the follow word equation.

[Total: 18]