Reactions and Applications of Transition Metals

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Transition Metals & Organic Nitrogen Chemistry
Sub Topic	Reactions and Applications of Transition Metals
Booklet	Question Paper 1

Time Allowed: 29 minutes

Score: /24

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	Th	e following complexes have different shapes.	
	Α	$[Ag(NH_3)_2]^+$	
	В	[CrCl ₄] ⁻	
	C	[Ni(H2NCH2CH2NH2)3]2+	
	D	$[Pt(NH_3)_2CI_2]$	
	(a)	Which complex is square-planar?	(4)
	X	A	(1)
	X	В	
	X	C	
	×	D	
	(b)) Which complex has geometric isomers?	(1)
	×	A	(1)
	X	В	
	X	C	
	X	D	
		(Total	for Question 1 = 2 marks)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

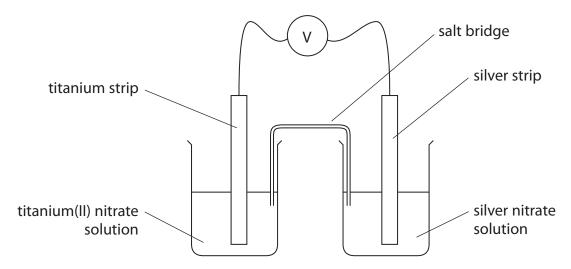
2 What are the colours of the complex ions formed by copper(II) ions with butylamine and chloride ions?

		$[Cu(C_4H_9NH_2)_4(H_2O)_2]^{2+}$	[CuCl ₄] ²⁻
×	A	blue	yellow
×	В	blue	green
X	c	yellow	blue
X	D	yellow	green

(Total for Question 2 = 1 mark)

- 3 Iron(III) ions form a more stable complex with EDTA than with water. What is the **best** explanation for this?
 - ☑ A Iron(III) ions form stronger bonds with EDTA than with water.
 - B Iron(III) ions form more bonds with EDTA than with water.
 - \triangle ΔS_{system} is positive for the formation of the EDTA complex from $[\text{Fe}(H_2O)_6]^{3+}$.
 - \square **D** $\Delta H_{\text{reaction}}$ is positive for the formation of the EDTA complex from $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$.

(Total for Question 3 = 1 mark)


- **4** What is the order of **increasing** reducing power of the ions Cr²⁺, Fe²⁺ and V²⁺? Use items 20, 54 and 26 on pages 14 and 15 of your Data Booklet.
 - \triangle **A** V^{2+} , Cr^{2+} , Fe^{2+} .
 - **B** Cr²⁺, V²⁺, Fe²⁺.
 - \square **C** Fe²⁺, V²⁺, Cr²⁺.
 - \triangle **D** Fe²⁺, Cr²⁺, V²⁺.

(Total for Question 4 = 1 mark)

Hvdr	ate	ed chromium(III) chloride, CrCl ₃ .6H ₂ O, exists in several isomeric forms with									
varying numbers of chloro and water ligands.											
0.20) m	tion containing 0.10 mol of one of these isomers reacts with excess silver nitrate. ol of silver chloride, AgCl, is precipitated immediately.									
X	\triangle A $[Cr(H_2O)_6]^{3+}$										
X	В	[CrCl(H2O)5]2+									
X	C	$[\operatorname{CrCl}_2(\operatorname{H}_2\operatorname{O})_4]^+$									
×	D	[CrCl3(H2O)3]									
		(Total for Question 5 = 1 mark)									
A sol	uti	on is prepared for use in the standard half cell $Fe^{3+}(aq)$, $Fe^{2+}(aq) Pt$.									
		s the mole ratio of the solids iron(II) sulfate, FeSO ₄ , and iron(III) sulfate, Fe ₂ (SO ₄) ₃ , should be dissolved to make the solution for this cell?									
X	Α	2:1									
×	В	1:1									
X	C	1:2									
X	D	3:2									
		(Total for Question 6 = 1 mark)									
	-	er reacts with nitrate ions, NO_3 , in acid conditions to form copper(II) ions and en(IV) oxide.									
•		nsidering the changes in the oxidation numbers of copper and nitrogen, it can duced that the redox reaction involves									
X	Α	1 mol of copper reacting with 2 mol of nitrate ions.									
X	В	2 mol of copper reacting with 1 mol of nitrate ions.									
X	C	1 mol of copper reacting with 4 mol of nitrate ions.									
X	D	4 mol of copper reacting with 1 mol of nitrate ions.									
		(Total for Question 7 = 1 mark)									
	A sol A sol Whi whi Cornitr By 6	A solution of the following th									

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

8 The cell shown in the diagram below was set up.

The emf of this cell under standard conditions is +2.43 V. The E^{\oplus} value for the Ag⁺(aq)|Ag(s) half cell is +0.80 V.

What is the E^{\oplus} value for the $Ti^{2+}(aq)|Ti(s)$ half cell?

- **B** +1.63 V
- ☑ C -1.63 V

(Total for Question 8 = 1 mark)

- **9** Which of the following species **never** combine with ligands to form complexes?
 - ☑ A Positively charged ions of d block elements.
 - **B** Neutral atoms of d block elements.
 - ☑ C Negatively charged ions of d block elements.
 - Positively charged ions of p block elements.

(Total for Question 9 = 1 mark)

		ition metal complexes are formed when ethanedioate ions and ethanoate ions ded separately to aqueous solutions of transition metal ions.							
		mplexes formed by the bidentate ethanedioate ligands are more stable than mplexes formed by the monodentate ethanoate ligands. This is because							
\times	A	ethanedioate ligands form stronger bonds with the metal ion of a complex than do ethanoate ligands.							
	В	the formation of ethanedioate complexes increases the number of particles in the solution.							
\times	C	ethanedioic acid is a stronger acid than ethanoic acid.							
\boxtimes I	D	ethanedioic acid is a weaker acid than ethanoic acid.							
		(Total for Question 10 = 1 mark)							
11 Wł	hicl	h of the following is correct for the standard hydrogen electrode?							
\times	Α	The temperature is kept at 273 K.							
\times	В	Sulfuric acid with a concentration of 0.5 mol dm ⁻³ is used.							
	C	The metal electrode is copper foil.							
X									
	D	The hydrogen pressure is 1 atmosphere.							

12	The	standard electrode	ootentials of two electrode s	systems are given below.
			$Cr^{3+}(aq) + 3e^- \rightleftharpoons Cr(s)$	$E^{\oplus} = -0.74 \text{ V}$
			$Cd^{2+}(aq) + 2e^- \rightleftharpoons Cd(s)$	$E^{\oplus} = -0.40 \text{ V}$
	Calcul	ate the E_{cell}^{\ominus} for the r	eaction	
			$2Cr(s) + 3Cd^{2+}(aq) \rightarrow 3Cd^{2+}$	(s) + $2Cr^{3+}(aq)$
	⊠ A	-0.34 V		
	⊠ B	+0.34 V		
	⊠ C	-0.28 V		
	⊠ D	+0.28 V		
				(Total for Question 12 = 1 mark)
13			eaction is positive but no re conditions. It can be deduc	action occurs when the reagents ced that
	⊠ A	the reaction is the kinetically stable.	rmodynamically feasible and	d the reaction mixture is
	⊠ B	the reaction is the kinetically unstabl	rmodynamically feasible and e.	d the reaction mixture is
	⊠ C	the reaction mixtu	re is thermodynamically and	d kinetically stable.
	⊠ D	the reaction mixtu	ire is thermodynamically sta	ble and kinetically unstable.
_				(Total for Question 13 = 1 mark)
14	green	precipitate is forme		ous solution of a metal ion, a excess ammonia to form a green solution?
	⊠ A	Ni ²⁺		
	⊠ B	Fe ²⁺		
	⊠ C	Cu ²⁺		
	⊠ D	Cr ³⁺		

(Total for Question 14 = 1 mark)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

15 The standard reduction potential of the system

$$Sn^{4+}(aq) + 2e^- \rightleftharpoons Sn^{2+}(aq)$$

is
$$E^{\oplus} = +0.15 \text{ V}$$
.

(a) What are the components of the half-cell required to measure the standard reduction potential of this system?

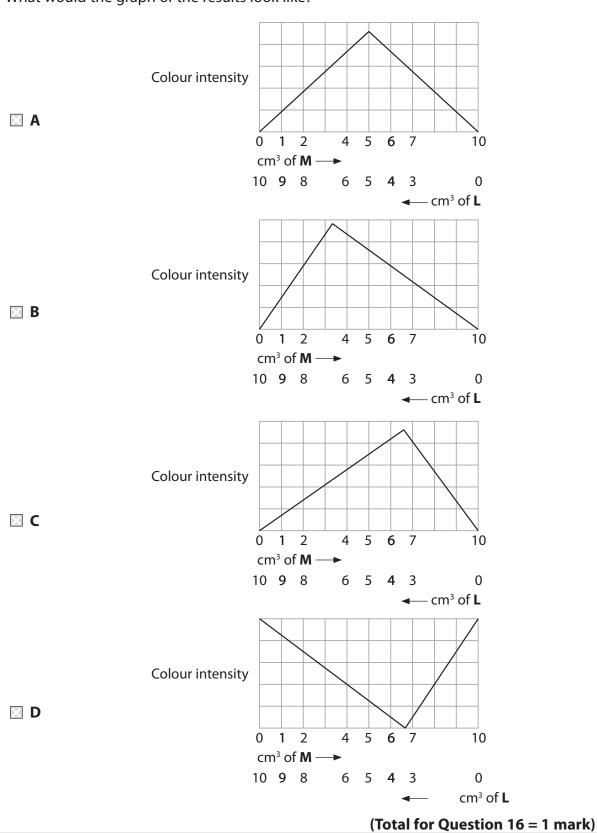
(1)

	Ion(s) in the solution	Metal electrode
⋈ A	Sn ²⁺	tin
⊠ B	Sn ⁴⁺	tin
⊠ C	Sn ²⁺ and Sn ⁴⁺	tin
⊠ D	Sn ²⁺ and Sn ⁴⁺	platinum

(b) A standard [Sn⁴⁺(aq)], [Sn²⁺(aq)] half cell is connected to a standard hydrogen electrode. At the hydrogen electrode

(1)

- ☑ A hydrogen gas is oxidized to hydrogen ions.
- **B** hydrogen ions are oxidized to hydrogen gas.
- D hydrogen ions are reduced to hydrogen gas.


(Total for Question 15 = 2 marks)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

A transition metal ion, **M**, reacts with a complexing agent, **L**, to form a coloured complex with the formula **ML**₂.

Portions of a 0.05 mol dm⁻³ solution of **M** were mixed with portions of a 0.05 mol dm⁻³ solution of **L**, so that the total volume of the resulting mixture was always 10 cm³. The colour intensities of the complex in these mixtures were measured using a colorimeter.

What would the graph of the results look like?

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 17 When concentrated hydrochloric acid is added to an aqueous solution of copper(II) sulfate, the blue solution changes to green then yellow. The change in colour is due to
 - ☑ A the formation of chlorine in the solution.
 - **B** the gradual replacement of the sulfate ion ligands by chloride ions.
 - ☑ C the gradual replacement of the water ligands by chloride ions.
 - D the reduction of the copper(II) ions to copper(I) ions.

(Total for Question 17 = 1 mark)

18 Dilute hydrochloric acid and dilute aqueous sodium hydroxide are added in excess to separate samples of chromium(III) hydroxide. What would be observed?

⊠ A

В

⊠ C

 \times D

Addition of HCl(aq)	Addition of NaOH(aq)
green solution	green solution
green solution	green solid
green solid	green solution
green solid	green solid

(Total for Question 18 = 1 mark)

- **19** Which of the following is **not** a redox reaction?
 - \square A $3CrCl_2 + Na_2CrO_4 + 8HCl \rightarrow 4CrCl_3 + 4H_2O + 2NaCl$
 - **B** $2MnO_4^{2-} + C_8H_7O_3^{-} + 2OH^{-} \rightarrow 2MnO_4^{3-} + C_8H_5O_3^{-} + 2H_3O$
 - \boxtimes **C** 3MnO₄²⁻ + 4H⁺ → 2MnO₄⁻ + MnO₂ + 2H₂O
 - \square **D** $MnO_4^- + 3H_2SO_4 \rightarrow MnO_3^+ + H_3O^+ + 3HSO_4^-$

(Total for Question 19 = 1 mark)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

20	ΤI	ne stand	lard	reducti	on	potent	ials	of	two	systems	are	given	below.	
----	----	----------	------	---------	----	--------	------	----	-----	---------	-----	-------	--------	--

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\oplus} = +0.34 \text{ V}$

$$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$$
 $E^{\oplus} = +0.80 \text{ V}$

What is $E_{\text{cell}}^{\ominus}$ for the reaction between copper and silver nitrate?

$$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$$

- B -0.46 V

(Total for Question 20 = 1 mark)

- 21 A cell is set up with two metal-metal ion half cells and the digital voltmeter reads zero. Given that all the components of the cell have been included and are working properly, what is the most likely explanation for the zero reading?
 - ☑ A The cell has been set up the wrong way round.
 - \square **B** The entropy change, $\Delta S_{\text{system}} = 0$.
 - ☑ C The activation energy for the reaction is very high.
 - D The reaction system is at equilibrium.

(Total for Question 21 = 1 mark)

- 22 A compound, **X**, is dissolved in water. Sodium hydroxide solution and dilute aqueous ammonia were added to different samples of this solution of **X**. In both, a precipitate formed which dissolved in excess reagent. Compound **X** could be
 - A copper(II) sulfate.
 - **B** iron(II) sulfate.

 - ☑ D zinc(II) sulfate.

(Total for Question 22 = 1 mark)