Continuous random variables Question Paper 2

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	Continuous random variables
Sub Topic	
Booklet	Question Paper 2

Time Allowed:	59 minutes
Score:	$/ 49$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 Darts are thrown at random at a circular board. The darts hit the board at distances X centimetres from the centre, where X is a random variable with probability density function given by

$$
\mathrm{f}(x)= \begin{cases}\frac{2}{a^{2}} x & 0 \leqslant x \leqslant a \\ 0 & \text { otherwise }\end{cases}
$$

where a is a positive constant.
(i) Verify that f is a probability density function whatever the value of a.

It is now given that $\mathrm{E}(X)=8$.
(ii) Find the value of a.
(iii) Find the probability that a dart lands more than 6 cm from the centre of the board.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Each of the random variables T, U, V, W, X, Y and Z takes values between 0 and 1 only. Their probability density functions are shown in Figs 1 to 7 respectively.
(i) (a) Which of these variables has the largest median?
(b) Which of these variables has the largest standard deviation? Explain your answer.
(ii) Use Fig. 2 to f nd $\mathrm{P}(U<0.5)$.
(iii) The probability density function of X is given by

$$
\mathrm{f}(x)= \begin{cases}a x^{n} & 0 \leqslant x \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

where a and n are positive constants.
(a) Show that $a=n+1$.
(b) Given that $\mathrm{E}(X)=\frac{5}{6}$, f nd a and n.

3 The random variable X has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}k \mathrm{e}^{-x} & 0 \leqslant x \leqslant 1 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Show that $k=\frac{\mathrm{e}}{\mathrm{e}-1}$.
(ii) Find $\mathrm{E}(X)$ in terms of e.

4 People arrive randomly and independently at a supermarket checkout at an average rate of 2 people every 3 minutes.
(i) Find the probability that exactly 4 people arrive in a 5 -minute period.

At another checkout in the same supermarket, people arrive randomly and independently at an average rate of 1 person each minute.
(ii) Find the probability that a total of fewer than 3 people arrive at the two checkouts in a 3-minute period.

5

The diagram shows the graph of the probability density function, f , of a random variable X which takes values between 0 and 2 only.
(i) Find $\mathrm{P}(1<X<1.5)$.
(ii) Find the median of X.
(iii) Find $\mathrm{E}(X)$.

6 A continuous random variable X has probability density function given by

$$
f(x)= \begin{cases}\frac{1}{6} x & 2 \leqslant x \leqslant 4 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Find $\mathrm{E}(X)$.
(ii) Find the median of X.
(iii) Two independent values of X are chosen at random. Find the probability that both these values are greater than 3 .

