For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

How Fast? - Rates

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	Edexcel
Topic	Rates, Equilibria & Further Organic Chemistry
Sub Topic	How Fast? - Rates
Booklet	Question Paper 2

Time Allowed: 39 minutes

Score: /32

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) Iodine reacts with propanone, CH₃COCH₃, in the presence of a catalyst of dilute hydrochloric acid.

$$CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$$

Students carried out a rate investigation of this reaction. In each set of experiments, the initial concentration of one substance was varied and the initial concentrations of the other two substances were kept constant.

First set of experiments

The initial concentration of propanone was varied.

Second set of experiments

The initial concentration of iodine was varied.

Third set of experiments

The initial concentration of hydrochloric acid was varied.

The results of each set of experiments are shown in the graphs below.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i)	For the second set of experiments, state a practical method for following the progress of this reaction. Indicate which substance is being monitored by your method.	
	your method.	(2)
*(ii)	Use the graphs to deduce the orders of reaction with respect to propanone, iodine and H^+ ions. Explain your reasoning.	
		(4)
(iii)	Write the rate equation for the reaction.	

(1)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(iv) In one of the exp	eriments, the follo	owing data we	ere collected:	
	[CH ₃ COCH ₃ (aq)] = 0.667 mc	ol dm ⁻³	
	$[I_2(aq)]$	= 1.67	⁻³ mol dm ⁻³	
	[H ⁺ (aq)]	= 0.667 m	-3	
	Initial rate	= 8.80 × 1	$0^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}$	
Use the data to ca Include units in y		for the rate co	onstant.	(2)
				(-/
			determining step in the	
of dilute hydroch		en iodine and	propanone in the presence	
	loric acid.	en iodine and	propanone in the presence	
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
 of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)
of dilute hydroch	loric acid.	en iodine and	propanone in the presence	(2)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) Iodine also forms hydrogen iodide by direct reaction with hydrogen.

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

A graph of $\ln k$ against 1/T for this reaction is shown below.

(i) Calculate the gradient of the graph. Include a sign and units in your answer.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) Use your value for the gradient of the graph to calculate the activation energy, $E_{\rm a}$. Include units and give your answer to **three** significant figures.

The Arrhenius equation is

$$\ln k = -\frac{E_a}{R} \times \frac{1}{T} + a \text{ onstant}$$

[Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$]

(2)

(Total for Question 1 = 15 marks)

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 The decomposition of dinitrogen pentoxide in a suitable solvent produces nitrogen

dioxide	, which remains in solution, and oxygen gas which is given off.	
The ove	erall equation for the reaction is:	
	$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$	
	w a diagram of the apparatus you would use to follow the rate of this reaction give the measurements you would make.	(3)
(b) (i)	The rate equation for this reaction is:	
	Rate = $k[N_2O_5]$	
,	What are the units of the rate constant, k?	(1)
*(ii)	A suggested mechanism for the reaction is:	
	1 st Step $N_2O_5 \rightarrow NO_2 + NO_3$	
	2 nd Step $_2 + NO_3 \rightarrow NO + O_2 + NO_2$	
	3^{rd} Step N + N ₂ O ₅ \rightarrow 3NO ₂	
	Label these reactions, fast or slow, and explain how your labelling is consistent with the rate equation for the reaction.	(3)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) The rate constant, *k*, was calculated at different temperatures.

(i)	Suggest a	practical	method	for	keenina	the	tempei	rature	constar	٦t
١	1/	Juddesta	practical	IIIEtiilou	101	rechilid	uic	temper	atuic	COHStar	11.

(1)

(ii) The table shows the measurements of the rate constant, k, at different temperatures. Some of the corresponding values for reciprocal of temperature and $\ln k$ are also shown.

Complete the table by calculating the missing values.

(2)

T/K	k	$\frac{1}{T} / K^{-1}$	In <i>k</i>
280	3.80×10^{-6}	3.57×10^{-3}	-12.5
290	1.65 × 10 ⁻⁵	3.45×10^{-3}	-11.0
300	6.87×10^{-5}	3.33×10^{-3}	-9.6
310	2.48×10^{-4}	3.23×10^{-3}	-8.3
320	8.65 × 10 ⁻⁴		

*(iii) Plot a graph of $\ln k$ on the vertical axis against 1/T on the horizontal axis.

Calculate the gradient of your graph and use this to calculate the activation energy, $E_{\rm a}$. Remember to include units with your answer, which should be given to three significant figures.

The Arrhenius equation can be expressed as

$$\ln k = -\frac{E_a}{R} \times \frac{1}{T} + a \quad \text{onstant}$$

[Gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$]

(7)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

