Atoms, elements and compounds

Question Paper 4

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Торіс	Atoms, Elements and Compounds
Sub-Topic	
Paper	(Extended) Theory
Booklet	Question Paper 4

TimeAllowed:	86 minutes	
Score:	/ 71	
Percentage:	/100	

- **1** Carbon and silicon are elements in Group IV. Both elements have macromolecular structures.
 - (a) Diamond and graphite are two forms of the element carbon.
 - (i) Explain why diamond is a very hard substance.

(ii) Give one use of diamond. [1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- (iii) Explain why graphite is a soft material.
 [2]
 (iv) Give one use of graphite.
 [1]
- (b) Two of the oxides of these elements are carbon dioxide, CO_2 , and silicon(IV) oxide, SiO_2 .
 - (i) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound carbon dioxide.
 Use x to represent an electron from a carbon atom.
 Use o to represent an electron from an oxygen atom.

(ii) A section of the macromolecular structure of silicon(IV) oxide is given below.

Use this diagram to explain why the formula is SiO_2 not SiO_4 .

(iii) Predict **two** differences in the physical properties of these two oxides. [2]

[3]

2 The diagrams below show the electron arrangement in two compounds.

(a)	In a water molecule, each hydrogen atom is bonded to the oxygen atom by sharing a pair of electrons. Why does an oxygen atom share two pairs of electrons rather than just one pair?
(b)	Describe how a potassium atom becomes a potassium ion.
	[1]
(c)	Why is there a bond between the ions in potassium chloride?
(d)	Solid potassium chloride is a poor conductor of electricity. When dissolved in water it is a good conductor. Explain.
	[Total: 5]

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

element	el distribution	
A	2,5	
В	2,8,4	
С	2,8,8,2	
D	2,8,18,8	
Е	2,8,18,8,1	
F	2,8,18,18,7	

3 The following is a list of the electron distributions of atoms of unknown elements.

(a) Choose an element from the list for each of the following descriptions.

(i)	It is a noble gas.	
(ii)	It is a soft metal with a low density.	
(iii)	It can form a covalent compound with element A .	
(iv)	It has a giant covalent structure similar to diamond.	
(v)	It can form a negative ion of the type X ³⁻ .	 [5]

- (b) Elements C and F can form an ionic compound.
 - (i) Draw a diagram that shows the formula of this compound, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use o to represent an electron from an atom of C. Use x to represent an electron from an atom of F.

[2]

(ii) Predict **two** properties of this compound.

[3]

- 4 There are three types of giant structure ionic, metallic and macromolecular.
 - (a) Sodium nitride is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of the valency electrons around the negative ion.

[3]

Use x to represent an electron from a sodium atom. Use o to represent an electron from a nitrogen atom.

(b)		Describe metallic bonding.	[0]
			[3]
	(ii)	Use the above ideas to explain why	
		metals are good conductors of electricity,	
			[1]
		metals are malleable.	
			[2]
(c)	Silio	con(IV) oxide has a macromolecular structure.	
	(i)	Describe the structure of silicon(IV) oxide (a diagram is not acceptable).	
			•••
			[3]
	(ii)	Diamond has a similar structure and consequently similar properties. Give two physical properties common to both diamond and silicon(IV) oxide.	
			•••
			[2]
		[Total:	14]

5 Complete the following table.

type of structure	particles present	electrical conductivity of solid	electrical conductivity of liquid	example
ionic	positive and negative ions	poor		
macro molecular	atoms of two different elements in a giant covalent structure	poor		
metallic	and	good		copper

[Total: 6]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- Magnesium reacts with bromine to form magnesium bromide. 6
 - (a) Magnesium bromide is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of outer electrons around the negative ion.

The electron distribution of a bromine atom is 2, 8, 18, 7.

	Use Use	e x to represent an electron o to represent an electron	from a magnesium atom. from a bromine atom.	[3]
(b)	In t 1:2	he lattice of magnesium b	romide, the ratio of magnesiur	m ions to bromide ions is
	(i)	Explain the term <i>lattice</i> .		
				[2]
	(ii)	Explain why the ratio of ior	ns is 1:2.	
				[1]
	(iii)	The reaction between mag	nesium and bromine is redox.	Complete the sentences.
		Magnesium is the		agent because it has
			electrons.	
		Bromine has been	because it has	
		electrons.		
				[Total: 10]

7 The table shows the melting points, boiling points and electrical properties of the six substances **A** to **F**.

substance	melting point / °C	boiling point / °C	electrical conductor at room temperature	electrical conductor of substance dissolved in water
Α	961	2193	good	does not dissolve
В	113	444	does not conduct	does not dissolve
С	0	100	very poor	very poor
D	803	1465	does not conduct	good
E	–5 to -1	102 to 105	good	good
F	-8	-6	does not conduct	does not dissolve

(i) Which three substances are solids at room temperature?

		[1]
(ii)	Which one is an ionic compound?	[1]
(iii)	Which one is a gas at room temperature?	[1]
	Which two substances are liquids at room temperature?	[1]
(v)	Which substance is a metal?	[1]
 (vi)	Which one is an impure substance?	[1]

8 (a The structure of a typical ionic compound is a regular arrangement of positive and negative ions.

(i) What is the name of this regular arrangement of particles? [1] (ii) Give two physical properties of ionic compounds. [2] (b) lons are formed by electron loss or gain. The electron distribution of a magnesium atom is 2 + 8 + 2 and of a nitrogen atom is 2 + 5. (i) Give the formula of the magnesium ion. [1] (ii) Give the formula of the nitride ion. [1] (iii) What is the formula of the ionic compound, magnesium nitride? [1] (iv) In this compound there is an ionic bond. Why are the two ions attracted to each other?[1]