Power

Question Paper 2

Level	International A Level
Subject	Maths
Exam Board	CIE
Topic	Energy, Work and Power
Sub Topic	Power
Booklet	Question Paper 2

Time Allowed:	58 minutes
Score:	$/ 48$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1 A particle P starts to move from a point O and travels in a straight line. The velocity of P is $k\left(60 t^{2}-t^{3}\right) \mathrm{m} \mathrm{s}^{-1}$ at time $t \mathrm{~s}$ after leaving O, where k is a constant. The maximum velocity of P is $6.4 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Show that $k=0.0002$.
P comes to instantaneous rest at a point A on the line. Find
(ii) the distance $O A$,
(iii) the magnitude of the acceleration of P at A,
(iv) the speed of P when it subsequently passes through O.

2 A particle moves in a straight line. Its velocity t seconds after leaving a fixed point O on the line is $v \mathrm{~m} \mathrm{~s}^{-1}$, where $v=0.2 t+0.006 t^{2}$. For the instant when the acceleration of the particle is 2.5 times its initial acceleration,
(i) show that $t=25$,
(ii) find the displacement of the particle from O.

3 A particle P starts from a point O and moves along a straight line. P 's velocity $t \mathrm{~s}$ after leaving O is $\nu \mathrm{m} \mathrm{s}^{-1}$, where

$$
v=0.16 t^{\frac{3}{2}}-0.016 t^{2}
$$

P comes to rest instantaneously at the point A.
(i) Verify that the value of t when P is at A is 100 .
(ii) Find the maximum speed of P in the interval $0<t<100$.
(iii) Find the distance $O A$.
(iv) Find the value of t when P passes through O on returning from A.

4 A particle P moves in a straight line. It starts from a point O on the line with velocity $1.8 \mathrm{~m} \mathrm{~s}^{-1}$. The acceleration of P at time $t \mathrm{~s}$ after leaving O is $0.8 t^{-0.75} \mathrm{~m} \mathrm{~s}^{-2}$. Find the displacement of P from O when $t=16$.

A woman walks in a straight line. The woman's velocity t seconds after passing through a fixed point A on the line is $v \mathrm{~m} \mathrm{~s}^{-1}$. The graph of v against t consists of 4 straight line segments (see diagram). The woman is at the point B when $t=60$. Find
(i) the woman's acceleration for $0<t<30$ and for $30<t<40$,
(ii) the distance $A B$,
(iii) the total distance walked by the woman.

6 A particle P moves in a straight line. It starts from rest at A and comes to rest instantaneously at B. The velocity of P at time t seconds after leaving A is $v \mathrm{~m} \mathrm{~s}^{-1}$, where $v=6 t^{2}-k t^{3}$ and k is a constant.
(i) Find an expression for the displacement of P from A in terms of t and k.
(ii) Find an expression for t in terms of k when P is at B.

Given that the distance $A B$ is 108 m , find
(iii) the value of k,
(iv) the maximum value of v when the particle is moving from A towards B.

