Power Question Paper 2

Level	International A Level
Subject	Maths
Exam Board	CIE
Торіс	Energy, Work and Power
Sub Topic	Power
Booklet	Question Paper 2

Time Allowed:	58 minutes
Score:	/48
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

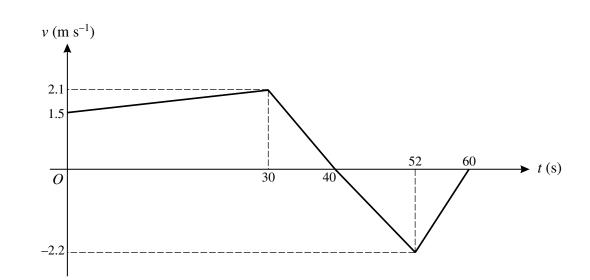
1 A particle P starts to move from a point O and travels in a straight line. The velocity of P is $k(60t^2 - t^3) \text{ m s}^{-1}$ at time t s after leaving O, where k is a constant. The maximum velocity of P is 6.4 m s^{-1} .

(i) Show that $k = 0.0002$.	[3]
P comes to instantaneous rest at a point A on the line. Find	
(ii) the distance OA,	[5]
(iii) the magnitude of the acceleration of P at A ,	[2]
(iv) the speed of P when it subsequently passes through O .	[2]

2 A particle moves in a straight line. Its velocity *t* seconds after leaving a fixed point *O* on the line is $v \text{ m s}^{-1}$, where $v = 0.2t + 0.006t^2$. For the instant when the acceleration of the particle is 2.5 times its initial acceleration,

[3]
[

- (ii) find the displacement of the particle from *O*. [3]
- 3 A particle *P* starts from a point *O* and moves along a straight line. *P*'s velocity *t* s after leaving *O* is $v \text{ m s}^{-1}$, where


$$v = 0.16t^{\frac{3}{2}} - 0.016t^2.$$

P comes to rest instantaneously at the point *A*.

- (ii) Find the maximum speed of P in the interval 0 < t < 100. [4]
- (iii) Find the distance *OA*. [3]
- (iv) Find the value of t when P passes through O on returning from A. [2]
- 4 A particle *P* moves in a straight line. It starts from a point *O* on the line with velocity 1.8 m s^{-1} . The acceleration of *P* at time *t* s after leaving *O* is $0.8t^{-0.75} \text{ m s}^{-2}$. Find the displacement of *P* from *O* when t = 16. [6]

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

A woman walks in a straight line. The woman's velocity *t* seconds after passing through a fixed point *A* on the line is $v m s^{-1}$. The graph of *v* against *t* consists of 4 straight line segments (see diagram). The woman is at the point *B* when *t* = 60. Find

(i) the woman's acceleration for $0 < t < 30$ and for $30 < t < 40$,	[3]
---	-----

(ii) the distance AB,	[2]	
-----------------------	-----	--

[1]

- (iii) the total distance walked by the woman.
- 6 A particle *P* moves in a straight line. It starts from rest at *A* and comes to rest instantaneously at *B*. The velocity of *P* at time *t* seconds after leaving *A* is $v \text{ m s}^{-1}$, where $v = 6t^2 - kt^3$ and *k* is a constant.

(i) Find an expression for the displacement of P from A in terms of t and k .	[2]
(ii) Find an expression for t in terms of k when P is at B .	[1]
Given that the distance AB is 108 m, find	
(iii) the value of k ,	[2]
(iv) the maximum value of v when the particle is moving from A towards B .	[3]

5