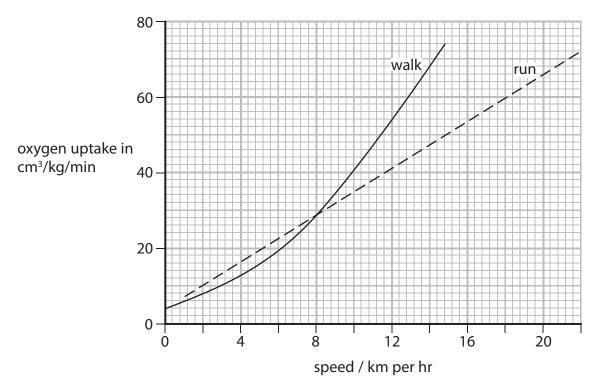
For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Circulatory System

Question Paper 2


Level	Edexcel
Subject	Biology
Exam Board	GCSE(9-1)
Topic	Exchange and Transport in Animals
Sub Topic	Circulatory System
Booklet	Question Paper 2

Time Allowed: 35 minutes

Score: /29

Percentage: /100

The graph shows the oxygen uptake for an athlete when walking and running.

(a) Compare the oxygen uptake when the athlete is walking and running at speeds from 6 to 10 km per hour.

(3)

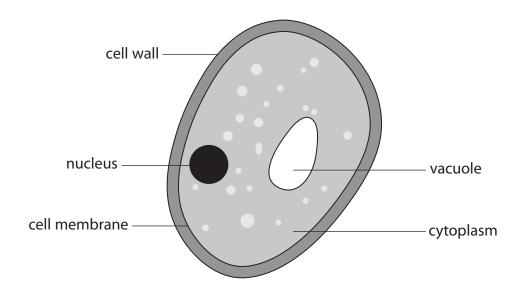
Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) (i)	Co	emplete the word equation for aerobic respiration.	(1)
		0	xygen + glucose — +	
	(ii)	Ex	plain why oxygen uptake increases as an athlete runs at faster speeds.	(2)
	(iii)) WI	hen athletes train hard they can respire anaerobically.	
		WI	nich of the following statements about anaerobic respiration are true?	
		1.	Lactic acid and carbon dioxide are produced.	
		2.	Lactic acid can build up causing cramp.	
		Pu	t a cross (🗵) in the box next to your answer.	(1)
	×	Α	statement 1 only	(1)
	×	В	statement 2 only	
	X	C	both statement 1 and 2	
	X	D	neither statement 1 nor 2.	

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) The heart rate and stroke volume of an athlete training at a high intensity were measured and their cardiac output was calculated.


The table shows the measurements before, after 2 weeks and after 4 weeks of training.

	heart rate / beats per minute	stroke volume / dm³	cardiac output / dm³ per minute
Before training	142	0.08	11.4
After 2 weeks training	164	0.10	16.4
After 4 weeks training		0.12	24.0

(i) Calculate the heart rate after 4 weeks of training.	(2)
t	peats per minute
 ii) Explain how the higher cardiac output after 4 weeks of training increased t rate of aerobic respiration. 	he
	(2)

(II) Explain how the higher cardiac output after 4 weeks of training increased the	
rate of aerobic respiration.	(2)
(Total for Question 1 = 11 ma	arks)

2 Yeasts are microorganisms that are used in the brewing and baking industries. The diagram shows a yeast cell.

(a) (i) State **two** ways in which the structure of this yeast cell differs from the structure of a bacterial cell.

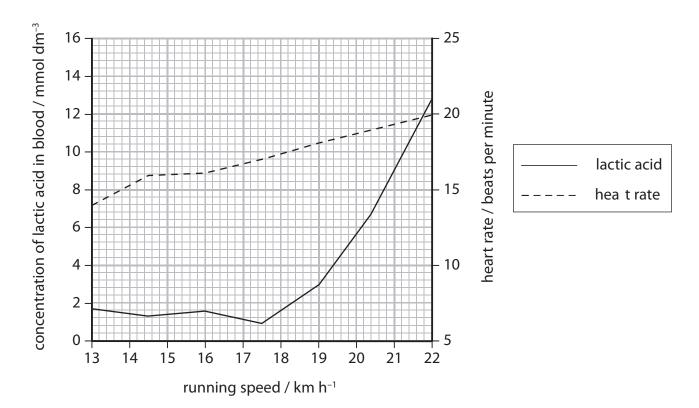
1		
2		
	(ii) Plant cells can produce glucose. Suggest why yeast cells cannot produce glucose.	(1)

(2)

between the healthy person and person A.

(b) The table shows the number of different components found in the blood of a healthy person and the blood of two other people.

	number of components per dm³ of blood			
component of blood	healthy person	person A	person B	
red blood cells	5 × 10 ¹²	6 × 10 ¹²	3 × 10 ¹²	
white blood cells	7 × 10 ⁹	5 × 10 ¹⁰	8 × 10 ¹⁰	
platelets	3 × 10 ¹¹	3 × 10 ¹¹	3 × 10 ¹¹	


(2)

(Total for Question 2 = 8 marks)

(i) Calculate the difference in the number of white blood cells per dm³ of blood

(ii) Describe the functions of white blood cells.	
(ii) Describe the functions of write blood cens.	(2)
(iii) Person B has a low number of red blood cells compared to the healthy person.	
Suggest an effect this may have on person B.	(1)

- 3 In an investigation, a person ran at different speeds.
 - (a) The graph shows the concentration of lactic acid in the blood and the heart rate of this person while running.

(i) When the running speed is 22 km h⁻¹, the stroke volume of the runner is 0.18 dm³. Calculate the cardiac output of the runner using the equation.

cardiac output = stroke volume \times heart rate
(2)

answer = dm³ per minute

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii)	Co	mplete the sentence by putting a cross (\boxtimes) in the box next to your answer.	
		nen the heart rate is at its maximum the concentration of lactic acid in the bod is	
			(1)
X	A	11.2 mmol dm ⁻³	
X	В	12.8 mmol dm ⁻³	
X	C	200.0 mmol dm ⁻³	
X	D	210.0 mmol dm ⁻³	
(iii)	Co	mplete the sentence by putting a cross (⊠) in the box next to your answer.	(1)
	The	e graph shows that	
X	A	as the heart rate increases the concentration of lactic acid increases	
X	В	as the concentration of lactic acid increases the heart rate decreases	
×	C	the concentration of lactic acid increases as running speed increases	
X	D	the concentration of lactic acid is not dependent on heart rate	
(iv)		plain why the concentration of lactic acid changes at running speeds eater than 18 km h^{-1} .	(3)

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) After running the person rested.	
Explain why the concentration of lactic acid in the blood changes v	whilst resting. (3)
(Total for Que	stion 3 = 10 marks)