For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Basic : Names of Compounds, Homologous Series Etc

Question Paper 2

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Topic	Organic Chemistry
Sub-Topic	Basics: Names of compounds, Homologous Series etc
Paper	(Extended) Theory
Booklet	Question Paper 2

TimeAllowed: 71 minutes

Score: /59

Percentage: /100

(a)			below.		
		alcohol	formula	heat of combustion in kJ/mol	
		methanol	CH ₃ OH	730	
		ethanol	CH ₃ -CH ₂ -OH	1380	
		propan-1-ol			
		butan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	2680	
		pentan-1-ol	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH	3350	
	(i)	Complete the ta	ble.		[2
(ii)	Complete the ed	quation for the combustion of per	ntan-1-ol in excess oxy	ygen.
		C _E H ₄₄ OH	I + +		[′
/L-\	O4 - 4		-		_
(a)	ואוכ		ariatica of a bancalariana carica .	athar than the verietie	n of physic
ŗ		perties down the	eristics of a homologous series of series.	other than the variatio	on of physica
Ĭ				other than the variatio	on of physic
				other than the variatio	on of physica
				other than the variatio	on of physica
			series.	other than the variatio	
	orop		series.		
	orop	following alcoho	series.		
(c) ⁻	orop	following alcoho	series. Ols are isomers. $\mathrm{CH_2-CH_2-CH_2-OH}$ and $\mathrm{(CH_3)_2C}$		
(c) ⁻	orop	following alcoho	series. Ols are isomers. $\mathrm{CH_2-CH_2-CH_2-OH}$ and $\mathrm{(CH_3)_2C}$		
(c) ⁻	orop	following alcoho	series. Ols are isomers. $\mathrm{CH_2-CH_2-CH_2-OH}$ and $\mathrm{(CH_3)_2C}$		
(c) ⁻	orop	following alcoho	series. Ols are isomers. $\mathrm{CH_2-CH_2-CH_2-OH}$ and $\mathrm{(CH_3)_2C}$		
(c) ⁻	orop	following alcoho	series. Ols are isomers. $\mathrm{CH_2-CH_2-CH_2-OH}$ and $\mathrm{(CH_3)_2C}$		

(d)	Alc	ohols can be made by fermentation and from petroleum.
	(i)	Ethanol is made from sugars by fermentation.
		$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$
		The mass of one mole of glucose, $C_6H_{12}O_6$, is 180 g. Calculate the maximum mass of ethanol which could be obtained from 72 g of glucose.
		[3]
	(ii)	Describe how ethanol is made from petroleum.
		petroleum (alkanes) $ ightarrow$ ethene $ ightarrow$ ethanol

.....[3]

[Total: 15]

2	of these	rlsbad caverns in New Mexico are very large underground caves. Although the walls e caves are coated with gypsum (hydrated calcium sulphate), the caves have been in limestone.
	(a) It is	believed that the caves were formed by sulphuric acid reacting with the limestone.
	(i)	Complete the word equation.
		calcium + sulphuric calcium + ++ carbonate acid sulphate [1]
	(ii)	Describe how you could test the water entering the cave to show that it contained sulphate ions.
		test
		result [2]
	(iii)	How could you show that the water entering the cave has a high concentration of hydrogen ions?
		[1]
		drogen sulphide gas which was escaping from nearby petroleum deposits was being dised to sulphuric acid.
	(i)	Complete the equation for this reaction forming sulphuric acid.
		$H_2S + O_2 \longrightarrow$ [2]
	(ii)	Explain why all the hydrogen sulphide should be removed from the petroleum before it is used as a fuel.
		[1]

of the covalent compound hydrogen sulphide.
Use o to represent an electron from a sulphur atom.

(iii) Draw a diagram to show the arrangement of the valency electrons in one molecule

		Use x to represent an electron from a hydrogen atom.	
			[2]
(c)		Sulphuric acid is manufactured by the Contact Process. Sulphuulphur trioxide by oxygen.	ır dioxide is oxidised to
		$2SO_2 + O_2 \longrightarrow 2SO_3$	
	(i)	i) Name the catalyst used in this reaction.	
			[1]
	(ii)	i) What temperature is used for this reaction?	
			[1]
	(iii)	 Describe how sulphur trioxide is changed into sulphuric acid 	
			[2]
(d)		Sypsum is hydrated calcium sulphate, $CaSO_4.xH_2O$. It contains calculate x.	20.9% water by mass.
	M _r :	<i>I</i> _r : CaSO₄, 136; H₂O, 18.	
	79.	9.1g of CaSO ₄ =	moles
	20.	0.9 g of H ₂ O =	moles
	x =	=	[3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 3 Some of the factors that can determine the rate of a reaction are concentration, temperature and light intensity.
 - (a) A small piece of calcium carbonate was added to an excess of hydrochloric acid. The time taken for the carbonate to react completely was measured.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

The experiment was repeated at the same temperature, using pieces of calcium carbonate of the same size but with acid of a different concentration. In all the experiments an excess of acid was used.

concentration of acid/mol dm ⁻³	4	2	2	
number of pieces of carbonate	1	1		
time/s		80		160

(i)	Complete the table (assume the rate is proportional to both the acid concentration and the number of pieces of calcium carbonate). [3]
(ii)	Explain why the reaction rate would increase if the temperature was increased.
	[2]
(iii)	Explain why the rate of this reaction increases if the piece of carbonate is crushed to a powder.
	[1]
(iv)	Fine powders mixed with air can explode violently. Name an industrial process where there is a risk of this type of explosion.
	[1]
(b) Soc	dium chlorate(I) decomposes to form oxygen and sodium chloride. This is an example

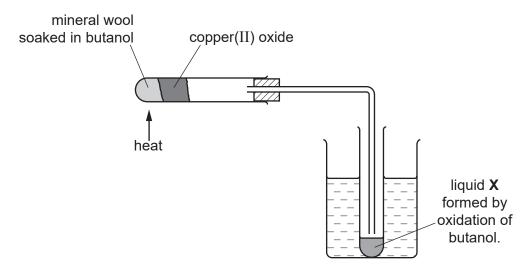
of a photochemical reaction. The rate of reaction depends on the intensity of the light.

.....[2]

 $2NaClO(aq) \rightarrow 2NaCl(aq) + O_2(g)$

Describe how the rate of this reaction could be measured.

(i)

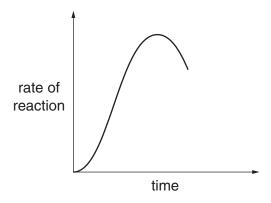

(ii)	How could you show that this reaction is photochemical?	
		[1]
	· · · · · · · · · · · · · · · · · · ·	iore
(i)	Complete the equation.	
	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + \dots$	[2]
(ii)	Glucose can be represented as	
	но —он	
	Pho con (i)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + \dots$ (ii) Glucose can be represented as

Draw the structure of a more complex carbohydrate that can be formed from glucose by condensation polymerisation.

The	alco	phols form an homologous series.	
(a)	Giv	e three characteristics of an homologous series.	
			[3]
(b)	The	following two alcohols are members of an homologous series and they are isomers.	
		$CH_3 - CH_2 - CH_2 - CH_2 - OH$ and $(CH_3)_2CH - CH_2 - OH$	
	(i)	Explain why they are isomers.	
			[2]
	/ii\	Deduce the structural formula of another alcohol which is also an isomer of th	
	(ii)	alcohols.	G36

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Copper(II) oxide can oxidise butanol to liquid **X**, whose pH is 4.


- (i) Give the name of another reagent which can oxidise butanol.
 - [1]
- (ii) Which homologous series does liquid X belong to?
 - [1]
- (iii) State the formula of liquid X.
 - [1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) The alcohol ethanol can be made by fermentation. Yeast is added to aqueous glucose.

$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

Carbon dioxide is given off and the mixture becomes warm, as the reaction is exothermic. The graph shows how the rate of reaction varies over several days.

(i) Suggest a method of measuring the rate of this reaction.

		[2]
(ii)	Why does the rate initially increase?	
		[1]

(iii) Suggest **two** reasons why the rate eventually decreases.

[2]

[Total: 14]