Electromagnetism

Question Paper 4

Level	A Level
Subject	Physics
Exam Board	OCR
Topic	Particles and medical physics
Sub-Topic	Electromagnetism
Booklet	Question Paper 4

Time Allowed: 27 minutes

Score: /22

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 Fig. 3.1 shows part of an accelerator used to produce high-speed protons. The protons pass through an evacuated tube that is shown in the plane of the paper.

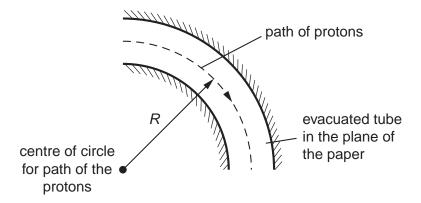


Fig. 3.1

The protons are made to travel in a circle of radius R by a magnetic field of flux density B.

(a)	State clearly the direction of the magnetic flux density B that produces the circular motion	of
	the protons.	

F4"
117
 F

(b)	Show that the relationship between the velocity v of the protons and the radius R is given by
	$v = \frac{BQR}{m}$ where Q and m are the charge and mass of a proton respectively.

[1]

(c) Calculate the magnetic flux density B of the magnetic field needed to keep protons in a circular orbit of radius 0.18 m. The time for one complete orbit is 2.0×10^{-8} s.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d)	Explain why the magnetic field does not change the speed of the protons.		
	[2]		
	 [Total: 7]		

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2	(a)	Define electric field strength.
	()	3
		r

(b) Fig. 3.1 shows two horizontal, parallel metal plates A and B.

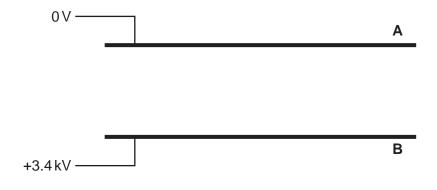


Fig. 3.1

The potential difference across the plates is 3.4 kV and the arrangement provides a uniform electric field between the plates.

On Fig. 3.1 draw at least six lines to represent the electric field between the plates. [2]

(c) A beam of electrons enters between the plates at right angles to the electric field. The horizontal velocity of the electrons is $4.0 \times 10^7 \, \text{m s}^{-1}$. The path of the electrons is shown on Fig. 3.2. The horizontal length of each plate is 0.080 m and the separation of the plates is 0.050 cm. **P** is a point 0.040 m from where the beam enters the plates.

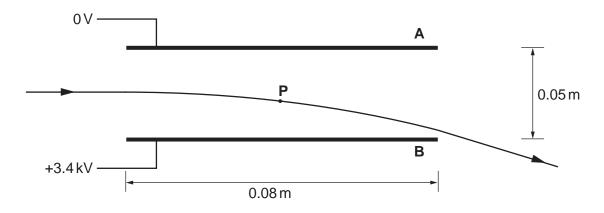


Fig. 3.2

(i) Draw an arrow on Fig. 3.2 to show the direction of the acceleration of an electron at **P**.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) Show that the acceleration of an electron between the plates is about $1 \times 10^{16} \,\mathrm{m}\,\mathrm{s}^{-2}$.

(iii) Calculate the time taken for an electron on entering the plates to reach P.

(iv) Show that the vertical velocity of the electron at **P** is $1.2 \times 10^7 \, \text{m s}^{-1}$.

(v) Calculate the magnitude of the resultant velocity of the electron at P.

magnitude of the velocity =
$$\dots$$
 ms⁻¹ [2]

(vi) Calculate the kinetic energy of the electron at **P**.

(vii) On Fig. 3.3 sketch the variation of kinetic energy $E_{\rm k}$ of the electron with the horizontal distance x it travels through the electric field and beyond. No calculations are required.

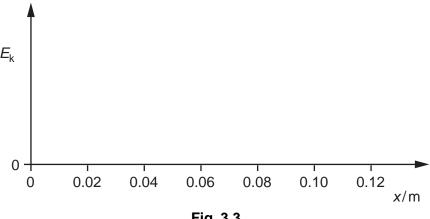


Fig. 3.3

[2]

[1]

[Total: 15]