Experimental Techniques

Question Paper 2

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Topic	Experimental techniques
Sub-Topic	
Paper	(Extended) Theory
Booklet	Question Paper 2

TimeAllowed: 66 minutes

Score: /55

Percentage: /100

1

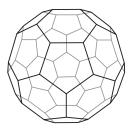
A m	ajor	source of energy is the combustion of fossil fuels.	
(a)	(i)	Name a solid fossil fuel.	
			[1]
((ii)	Name a gaseous fossil fuel.	
			[1]
(b)	Pet	roleum is separated into more useful fractions by fractional distillation.	
	(i)	Name two liquid fuels obtained from petroleum.	
		and	[2]
((ii)	Name two other useful products obtained from petroleum that are not used fuels.	as
		and	[2]
(iii)	Give another mixture of liquids that is separated on an industrial scale by fraction distillation.	nal
			[1]
		[Total:	7]

2 A list of techniques used to separate mixtures is given below.

fractional distillation	simple distillation	crystallization	filtration	diffusion
From the list choos	se the most suitable t	echnique to separate	the following.	
water from aqueou	us copper(II) sulphat	e		
helium from a mixt	ture of helium and ar	gon		
copper(II) sulphate from aqueous copper(II) sulphate				
ethanol from aque	ous ethanol			
barium sulphate fr	om a mixture of wate	er and barium sulphat	e	[5]

[Total: 5]

Save My Exams! - The Home of Revision


For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(a) Match the following pH values to the solutions given below.

	The colutions all have the same concentration		
	The solutions all have the same concentration.		
	solution	рН	
	aqueous ammonia, a weak base		
	dilute hydrochloric acid, a strong acid		
	aqueous sodium hydroxide, a strong base		
	aqueous sodium chloride, a salt		[5]
	dilute ethanoic acid, a weak acid		[ب]
(b)	Explain why solutions of hydrochloric acid a mol/dm³, have a different pH.	nd ethanoic acid with the same concentration	, in
			[2]
(c)	Measuring pH is one way of distinguishing be Describe another method.	etween a strong acid and a weak acid.	
	method		
	results		
			[2]

[Total: 9]

In 1985 the fullerenes were discovered. They are solid forms of the element carbon. The structure of the C_{60} fullerene is given below.

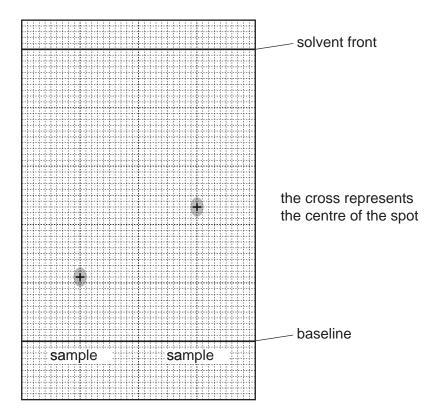
(a)	(i)	In the C_{60} fullerene, how many other carbon atoms is each carbon atom bonded to?
	(ii)	Another fullerene has a relative molecular mass of 840. How many carbon atoms are there in one molecule of this fullerene?
		[1]
(b)	are Des	lerenes are soluble in liquid hydrocarbons such as octane. The other solid forms of carbon insoluble. scribe how you could obtain crystals of fullerenes from soot which is a mixture of fullerenes of the solid forms of carbon.
		[3]
(c)	Αm	nixture of a fullerene and potassium is an excellent conductor of electricity.
	(i)	Which other form of solid carbon is a good conductor of electricity?
		[1]
	(ii)	Explain why metals, such as potassium, are good conductors of electricity.
		[2]
	(iii)	The mixture of fullerene and potassium has to be stored out of contact with air. There are substances in unpolluted air which will react with potassium. Name two potassium compounds which could be formed when potassium is exposed to air.
		[2]

[Total: 10]

The ester linkage showing all the bonds is drawn as 5

or more simply it can be written as -COO-.

(a) (i) Give the structural formula of the ester ethyl ethanoate.


			[1]
	(ii)	Deduce the name of the ester formed from methanoic acid and butanol.	
			[1]
(b)	(i)	Which group of naturally occurring compounds contains the ester linkage?	
			[1]
	(ii)	Draw the structural formula of the polyester formed from the following monomers	s.
		HOOCC ₆ H ₄ COOH and HOCH ₂ CH ₂ OH	

You are advised to use the simpler form of the ester linkage.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Esters can be used as solvents in chromatography. The following shows a chromatogram of plant acids.

An ester was used as the solvent and the chromatogram was sprayed with bromothymol blue.

(i)	Suggest why it was necessary to spray the chromatogram.
	[2]
(ii)	Explain what is meant by the $R_{\rm f}$ value of a sample.
	[1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(iii) Calculate the $R_{\rm f}$ values of the two samples and use the data in the table to identify the plant acids.

plant acid	R _f value
tartaric acid	0.22
citric acid	0.30
oxalic acid	0.36
malic acid	0.46
succinic acid	0.60

sample 1	$R_f = \dots$	It is acid.	
sample 2	$R_f = \dots$	It is acid.	[2]

[Total: 11]

6	oxide, is	of aluminium is bauxite which is impure aluminium oxide. Alumina, pure aluminium is obtained from bauxite. It is formed at the cathode when a molten mixture of alumina and cryolite, Na_3AlF_6 , colysed.
	(a)	Name two products formed at the anode in this electrolysis.
		[2]
	(ii)	All the aluminium formed comes from the alumina not the cryolite. Suggest two reasons why the electrolyte must contain cryolite.
		[2]
	(iii)	The major impurity in bauxite is iron(III) oxide. Iron(III) oxide is basic, aluminium oxide is amphoteric. Explain how aqueous sodium hydroxide can be used to separate them.
		[2]

(b) The purification of bauxite uses large amounts of sodium hydroxide.

(i)	Describe the chemistry of how sodium hydroxide is made from concentrated aqueous sodium chloride. The description must include at least one ionic equation.
	[5]
(ii)	Making sodium hydroxide from sodium chloride produces two other chemicals. Name these two chemicals and state one use of each chemical.
	chemical
	use
	chemical
	use[2]

[Total: 13]