The Periodic Table

Question Paper 4

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Topic	The Periodic Table
Sub-Topic	
Paper	(Extended) Theory
Booklet	Question Paper 4

TimeAllowed: 81 minutes

Score: /67

Percentage: /100

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 Use your copy of the Periodic Table to answer these questions.

[Total: 10]

2

Nic	kel is	s a transition element.
(a)	Pre	dict three differences in the chemical properties of nickel and barium.
		[3]
(b)		kel ores are converted into nickel(II) oxide. This can be reduced to impure nickel by sting with carbon. The nickel is purified by the following reversible reaction.
		$Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$
		nickel carbonyl
	(i)	Impure nickel is heated at 60 °C. The forward reaction occurs.
		$Ni(s) + 4CO(g) \rightarrow Ni(CO)_4(g)$ impure
		The nickel carbonyl, a gas, moves into a hotter chamber at 200 °C. The backward reaction occurs and the nickel carbonyl decomposes.
		$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$
		pure
		Is the forward reaction exothermic or endothermic? Give a reason for your answer.
		[2]
	(ii)	Explain why the forward reaction is favoured by an increase in pressure.
		[2]
((iii)	Suggest what happens to the impurities.
		[1]

(iv) Suggest another method of refining nickel. Give a brief description of the method which you have suggested. A labelled diagram is acceptable.

[4]

[Total: 12]

3	CI	noose an element which fitseachofthefollowingdescriptions.
	(i)	It is a yellow solid which burns to form an acidic oxide.
		[1]
	(ii)	This element is a black solid which, when heated, forms a purple vapour.
		[1]
	(iii)	Most of its soluble salts are blue.
		[1]
	(iv)	It has a basic oxide of the type MO which is used to treat acidic soils.
		[1]
	(v)	It is an unreactive gas used to fill balloons.
		[1]
		[Total: 5]

4

Titanium is a transition element. It is isola	ated by the following reactions.	
titanium ore \rightarrow titanium(IV) oxid ${\rm TiO_2}$	${ m de} ightarrow { m titanium}({ m IV}) { m chloride} ightarrow { m titanium}$ Ti	
transition elements?	ude a number in the name of the compounds	
(b) Titanium(IV) chloride is made by hea	ating the oxide with coke and chlorine.	[1
$TiO_2 + 2C$	$l_2 \rightleftharpoons \text{TiC} l_4 + O_2$	
2C +	O₂ ⇌ 2CO	
Explain why the presence of coke er	sures the maximum yield of the metal chloride.	
		[2
(c) Explain why the change, titanium(IV)	chloride to titanium, is reduction.	
		[1]
(d) Complete the table which shows son The first line has been completed as	ne of the properties of titanium and its uses. an example.	
property	related use	
soluble in molten steel	making steel titanium alloys	
	making aircraft and space vehicles	
resistant to corrosion, especially in sea w	vater	

(e)	The	e titanium ore contains 36.8% iron, 31.6% titanium and the remainder is oxygen.	
	(i)	Determine the percentage of oxygen in this titanium compound.	
		percentage of oxygen = %	[1]
((ii)	Calculate the number of moles of atoms for each element. The number of moles of Fe is shown as an example. number of moles of Fe = $36.8/56 = 0.66$	
		number of moles of Ti =	
		number of moles of O =	[1]
(iii)	What is the simplest ratio for the moles of atoms?	
		Fe : Ti	
			[1]
(iv)	What is the formula of this titanium compound?	
			[1]
		[Total:	10]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5 Chromium is a transition element	tion eleme	transition e	is a	um	Chromi	5
------------------------------------	------------	--------------	------	----	--------	---

(a)		Predict two differences in the physical properties of chromium and sodium.	
	(ii)	Predict two differences in the chemical properties of chromium and sodium.	 <u>?]</u>
			 <u>2]</u>
(b)	Chro	omium is used to electroplate steel objects. The diagram shows how this could be.	е
		lead anode chromium(III) sulfate(aq) object to be plated chromium(III) sulfate(aq)	
	(i)	Give two reasons why steel objects are plated with chromium.	
		[2	2]
	(ii)	The formula of the chromium(III) ion is Cr^{3+} and of the sulfate ion is $SO_4^{\ 2-}$. Give th formula of chromium(III) sulfate.	е
		[1	1

(iii) Write the equation for the reaction at the negative electrode (cathode).

(anode). Name this gas.

......[2]

.....[1]

(iv) A colourless gas, which relights a glowing splint, is formed at the positive electrode

(v)	During electrolysis, it is necessary to add more chromium(III) sulfate but during copper-plating using a copper anode, it is not necessary to add more copper(II) sulfate. Explain.
	[2]
	[Total: 12]

The first three elements in Group IV are carbon, silicon and germanium. The elements and their compounds have similar properties.

(a)	The compound, silicon carbide, has a macromolecular structure similar to that of diamond.			
	(i)	A major use of silicon carbide is to rein the construction of spacecraft. Suggest	force aluminium alloys which are used in three of its physical properties.	
				[3]
	(ii)	Complete the following description of the	ne structure of silicon carbide.	
		Each carbon atom is bonded to four	atoms.	
		Each silicon atom is bonded to	carbon atoms.	[2]
(b)		rmanium(IV) oxide, GeO ₂ , has the sar de. Draw the structural formula of germa	ne macromolecular structure as silicon(nium(IV) oxide.	IV)

(c)	Gei	rmanium forms a series of hydrides comparable to the alkanes.	
	(i)	Draw the structural formula of the hydride which contains four germanium at per molecule.	oms
			[1]
	(ii)	Predict the products of the complete combustion of this hydride.	1.1
			[2]
		[Total:	11]

7

For each of the following select an element from Period 4, matches the description.	potassium to krypton, that
(a) It is a brown liquid at room temperature.	
(b) It forms a compound with hydrogen having the formula XH ₄ .	
(c) A metal that reacts violently with cold water.	
(d) It has a complete outer energy level.	
(e) It has oxidation states of 2 and 3 only.	
(f) It can form an ion of the type X ⁻ .	
(g) One of its oxides is the catalyst in the Contact Process.	
	[Total: 7]