Acids, bases and salts

Question Paper 1

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Topic	Acids, bases and salts
Sub-Topic	
Paper	(Extended) Theory
Booklet	Question Paper 1

TimeAllowed: 78 minutes

Score: / 65

Percentage: /100

- Soluble salts can be made using a base and an acid.
 - (a) Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride-6-water from the insoluble base cobalt(II) carbonate.

step 1	
Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.	
step 2	
step 3	

step 4	
	Γ Δ'
	14

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) (i) 5.95 g of cobalt(II) carbonate were added to $40\,\mathrm{cm^3}$ of hydrochloric acid, concentration $2.0\,\mathrm{mol/dm^3}$.

Calculate the maximum yield of cobalt(II) chloride-6-water and show that the cobalt(II) carbonate was in excess.

$$CoCO_3 + 2HCl \rightarrow CoCl_2 + CO_2 + H_2O$$

 $CoCl_2 + 6H_2O \rightarrow CoCl_2.6H_2O$

maximum yield:

	number of moles of HC1 used =
	number of moles of $CoCl_2$ formed =
	number of moles of $CoCl_2.6H_2O$ formed =
	mass of one mole of $CoCl_2.6H_2O = 238g$
	maximum yield of $CoCl_2.6H_2O = \dots g$
	to show that cobalt(II) carbonate is in excess:
	number of moles of HCl used = (use your value from above)
	mass of one mole of CoCO ₃ = 119 g
	number of moles of CoCO ₃ in 5.95 g of cobalt(II) carbonate =[5]
(ii)	Explain how these calculations show that cobalt(II) carbonate is in excess.
	[1]

[Total: 10]

2	Sulfuric acid is a strong acid. In aqueous solution, it ionises as shown below.				
		$H_2SO_4 \rightarrow$	$2H^{+} + SO_{4}^{2-}$		
	(a) […]]]Ł	What is meant by	y the term acid?		
(ii)	Sulfurous	acid, H ₂ SO ₃ , is a v			[1]
	State the	e difference between	n a weak acid and	l a strong acid.	
					[2]

(b)	(b) Sulfurous acid forms salts called sulfites, which contain the ion SO_3^{2-} .		
	Whe	en barium nitrate solution is added to aqueous sulfurous acid, a white precipitate,	
A, forms.	Éβromi	ne water changes from brown to colourless when added to aqueous sulfurous acid.	
E	Bromir	ne Áixidises Áiulfurous Áicid. ÁWhen Áhis Áiolution Ás Áested Ávith Áicidified Áiarium Áitra	ate
Á	s olutio	on, a different white precipitate, B , is formed.	
	(i)	Identify the white precipitate, A.	
	(ii)	Identify the white precipitate, B .	
	(iii) [·]	Write an ionic equation for the reduction of the bromine molecule.	
	(iv)	Name the product formed by the oxidation of sulfurous acid.	']
			 [1

c) Complete the following word equations.				
(i)	magnesium hydroxide + dilute sulfuric acid			
	[1]			
(ii)	zinc + dilute sulfuric acid			
	[1]			
(iii)	copper carbonate + dilute sulfuric acid			
	[1]			
(d) Write	e equations for the reaction of dilute sulfuric acid with each of the following.			
(i)	ammonia			
	[0]			
/ii/.	[2]			
(ii)	sodium hydroxide			
	[2]			
(iii)	iron			
	[2]			

[Total: 16]

Acid-base reactions are examples of proton transfer.

(a)	Eth	Ethylamine is a weak base and sodium hydroxide is a strong base.		
	(i)	In terms of proton transfer, explain what is meant by the term weak base.		
		[2]		
	(ii)	Given aqueous solutions of both bases, describe how you could show that sodium hydroxide is the stronger base. How could you ensure a 'fair' comparison between the two solutions?		
		[3		
(b)	Eth	ylamine reacts with acids to form salts.		
		${\rm CH_3CH_2NH_2}$ + ${\rm HC}l$ \rightarrow ${\rm CH_3CH_2NH_3C}l$ ethylammonium chloride		
	(i)	Complete the equation for the reaction between sulfuric acid and ethylamine. Name the salt formed.		
		\dots CH ₃ CH ₂ NH ₂ + \dots \rightarrow \dots		
		name of salt[3		
	(ii)	Amines and their salts have similar chemical properties to ammonia and ammonium salts		
		Suggest a reagent that could be used to displace the weak base, ethylamine, from its salethylammonium chloride.		
		[1]		

(c)	Gas	ases diffuse, which means that they move to occupy the total available volume.		
	(i)	Explain, using kinetic particle theory, why gases diffuse.		
		[2]		
	(ii) When the colourless gases hydrogen bromide and ethylamine come into contact, a wh solid is formed.			
		$CH_3CH_2NH_2(g) + HBr(g) \rightarrow CH_3CH_2NH_3Br(s)$ white solid		
		The following apparatus can be used to compare the rates of diffusion of the two gases ethylamine and hydrogen bromide.		
		gives off gives off $CH_3CH_2NH_2(g)$ $HBr(g)$		
		A B C		
		then we all and lead in		
	CC	otton wool soaked in cotton wool soaked in ethylamine(aq) conc. hydrobromic acid		
		Predict at which position, A , B or C , the white solid will form. Explain your choice.		
		[3]		
		[Total: 14]		

4	Three	common methods	s of preparing salts are shown below.	
		method A removing excess	adding an excess of an insoluble base or carbonate or metal to a dilust by filtration	ute acid and
		method B	using a burette and indicator	
		method C	mixing two solutions to obtain the salt by precipitation	
			ving salt preparations, choose a method, ${\bf A},{\bf B}$ or ${\bf C}.$ Name any additioded and complete the equation.	nal
	(a)	the soluble salt, i	nickel chloride, from the insoluble compound nickel carbonate	
		method		
		reagent		
		word equation		[3]
	(b)	the insoluble salt	, lead(II) bromide, from aqueous lead(II) nitrate	
		method		
		reagent		
		ionic equation	+ \rightarrow PbBr ₂	[3]
	(c)	the soluble salt, I	ithium sulfate, from the soluble base lithium hydroxide	
		method		
		reagent		
		equation		
			rr-	[4]
			[10	otal: 10]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5 This question is concerned with the following oxides.

aluminium oxide carbon monoxide copper(II) oxide silicon(IV) oxide sodium oxide sulfur dioxide zinc oxide

Choose **one** oxide from the above list to match each of the following descriptions. An oxide may be used once, more than once or not at all.

(a)	This oxide does not react with acid or alkali[1]
(b)	This oxide reacts with water to give a strong alkali solution
(c)	This oxide is used as a bleach. [1]
(d)	This oxide is amphoteric
(e)	This oxide has a giant covalent structure
(f)	This oxide is soluble in water and it is acidic[1]

[Total: 6]

(a) Match the following pH values to the solutions given

	1 3 7 10	oe i 8w.
	The solutions all have the same concentration.	
	solution pH	
	aqueous ammonia, a weak base	
	dilute hydrochloric acid, a strong acid	
	aqueous sodium hydroxide, a strong base	
	aqueous sodium chloride, a salt	
	dilute ethanoic acid, a weak acid	 [5]
		[0]
b)	(b) Explain why solutions of hydrochloric acid and ethan mol/dm³, have a different pH.	oic acid with the same concentration, in
	men am , nave a amerent pri.	
		[2]
c)	c) Measuring pH is one way of distinguishing between a Describe another method.	strong acid and a weak acid.
	method	
	results	
		[2]

[Total: 9]