Hooke's Law Question Paper

Level	A Level
Subject	Physics
Exam Board	Edexcel
Торіс	Mechanics
Sub Topic	Hooke's Law
Booklet	Question Paper
Paper Type	Multiple Choice

Time Allowed:	9 minutes
Score:	/7
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Use the following information to answer questions 1 and 2.

A spring obeys Hooke's law. A force of 2.0 N extends the spring by 0.30 m.

- 1 A 6.0 N force will extend the spring by
 - 🖾 A 0.10 m
 - **■ B** 0.30 m
 - 🖾 C 0.60 m
 - ☑ **D** 0.90 m

(Total for Question = 1 mark)

- 2 The energy stored in the spring when a force of 2.0 N is applied is
 - 🖾 A 0.09 J
 - **■ B** 0.30 J
 - 🖾 C 0.60 J
 - **D** 0.90 J

3 A spring is suspended from a bar. When a load of 6.0 N is added to the bottom of the spring, its length changes from 0.040 m to 0.13 m.

To find the spring constant of the spring you would use

4 The graph shows how extension varies with applied force for a spring.

The stiffness of the spring in Nm^{-1} is

- A 1.5
- **B** 54
- C 67
- **D** 150

Questions 6 and 7 refer to the graphs and information below.

A force is applied to a spring and the spring extends. The new length of the spring is recorded.

This procedure is repeated for different applied forces.

5 Which of the above graphs could be obtained from this experiment?

 $\begin{tabular}{ll} \hline \mathbf{A} & P \mbox{ and } Q \end{tabular}$

 $\square \ \mathbf{B} \ \mathsf{P} \text{ and } \mathsf{S}$

- \square C R and Q
- $\hfill\square \hfill D$ R and S

(Total for Question = 1 mark)

6 The graphs could show that the spring is

- A obeying Hooke's law.
- **B** extending plastically.
- \square C extended beyond the limit of proportionality.
- **D** being compressed as well as extended.

7 A force is applied across the ends of a spring and the following force-extension graph is drawn.

Three points, P, Q and R, are marked on the graph. At point Q the applied force is zero.

In the table below, the spring is represented using diagrams drawn to scale. The spring at Q is represented by MMM.

Select the row from the table that correctly represents the length of the spring at positions P, Q and R.

	Р	Q	R
		(no applied force)	
A	www	www	~~~~~
B	www	$\mathcal{M}\mathcal{M}$	~~~~~
C	~~~~~	www	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
D D	www	www	www