Motion Graphs Question Paper

Level	A Level
Subject	Physics
Exam Board	Edexcel
Topic	Mechanics
Sub Topic	Motion Graphs
Booklet	Question Paper
Paper Type	Multiple Choice

Time Allowed:	18 minutes
Score:	$/ 15$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

Questions 1 and 2 refer to the graph below.

The graph is a displacement-time graph for a runner.

1 The velocity of the runner at 5 s is approximately
$\square \mathbf{A} \mathrm{m} \mathrm{s}^{-1}$
\square B $9 \mathrm{~m} \mathrm{~s}^{-1}$
$\square \mathbf{C} \quad 12 \mathrm{~m} \mathrm{~s}^{-1}$
\square D $40 \mathrm{~m} \mathrm{~s}^{-1}$

2 The velocity-time graph for the runner over the full 12 s is v

A

B

C

DB
\square CD
(Total for Question = 1 mark)

3 Which of the following graphs could be the velocity-time graph for the ball?
AB
CD

4 A ball is rolled along a horizontal surface. Frictional forces slow the ball to rest.
The velocity-time graph for the ball is shown.

Select the row of the table that correctly gives the corresponding displacement-time and acceleration-time graphs for the ball.

	Displacement-time graph	Acceleration-time graph
$\square \mathbf{A}$		
\square B		
$\square \mathbf{C}$		
\square D		

5 Displacement can be found from the
A area under a distance-time graph.
B area under a velocity-time graph.
C gradient of a distance-time graph.
D gradient of a velocity-time graph.
(Total for Question = 1 mark)

6 Protactinium has a half-life of 70 s . A sample of protactinium is prepared and monitored over a period of time. Which of the following statements is correct?A The activity of the protactinium will be zero after 140 s .
B The activity of the protactinium will be 25% of its initial value after 140 s .
C The activity of the protactinium will be 12.5% of its initial value after 280 s .D The activity of the protactinium will never become zero.
(Total for Question = 1 mark)

7 In which of the following situations would a blue shift be observed?
A Source and observer moving with the same velocity.
B Source moving along a circular path around an observer.
C Source moving away from a stationary observer.
D Source moving towards a stationary observer.

Use the following graph to answer Questions 11 and 12
The graph shows how velocity varies with time for an object.

8 The total distance travelled by the object in 4 s isA 20 mB 40 mC 60 mD 80 m
(Total for Question = 1 mark)

9 The acceleration at 3 s is
A $10 \mathrm{~m} \mathrm{~s}^{-2}$
B $7 \mathrm{~m} \mathrm{~s}^{-2}$C $5 \mathrm{~m} \mathrm{~s}^{-2}$D $0 \mathrm{~m} \mathrm{~s}^{-2}$

10 A ball is thrown vertically upwards. It reaches a maximum height, moves downwards and is caught by the thrower at a time t.

Which of the following is the kinetic energy-time graph for the ball?

A

C

B

DABCD

Questions 14 and 15 refer to the graph below.

The velocity-time graph for an object is shown.

11 The initial acceleration of the object isA $0.40 \mathrm{~m} \mathrm{~s}^{-2}$B $0.50 \mathrm{~m} \mathrm{~s}^{-2}$C $2.0 \mathrm{~m} \mathrm{~s}^{-2}$D $9.0 \mathrm{~m} \mathrm{~s}^{-2}$
(Total for Question = 1 mark)

12 The displacement of the object during the time of deceleration isA 29 mB -29 mC 15 mD -15 m

13 The acceleration of free fall on a particular planet is $8.0 \mathrm{~m} \mathrm{~s}^{-2}$. An object is dropped from a height and hits the ground after 1.5 s . From what height was it dropped?A 6.0 mB 9.0 mC 11 mD 12 m
(Total for Question $10=1$ mark)

14 Acceleration can be found from theA area under a distance-time graph.B area under a velocity-time graph.C gradient of a distance-time graph.D gradient of a velocity-time graph.

$$
\text { (Total for Question = } 1 \text { mark) }
$$

15 Velocity can be found from theA area under a displacement-time graphB area under a force-time graphC gradient of a displacement-time graphD gradient of an acceleration-time graph

