UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0625 PHYSICS

0625/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0625	32

NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS

M marks

are method marks upon which further marks depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent marks can be scored.

B marks:

are independent marks, which do not depend on other marks. For a B mark to scored, the point to which it refers must be seen specifically in the candidate's answers.

A marks

In general A marks are awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded.

It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. However, correct numerical answers with no working shown gain all the marks available.

C marks

are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, **provided subsequent working gives evidence that they must have known it.** For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored.

A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.

brackets ()

around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets.

e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

underlining

indicates that this <u>must</u> be seen in the answer offered, or something very similar.

OR / or

indicates alternative answers, any one of which is satisfactory for scoring the marks.

e.e.o.o.

means "each error or omission".

o.w.t.t.e.

means "or words to that effect".

Spelling

Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit.

Not/NOT

Indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Ignore

Indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0625	32

ecf

meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions.

This indicates that if a candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated ecf.

Sig. figs.

Answers are normally acceptable to any number of significant figures ≥ 2. Any exceptions to this general rule will be specified in the mark scheme. In general, accept numerical answers, which, if reduced to two significant figures, would be right.

Units

Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working.

Arithmetic errors Deduct one mark if the **only** error in arriving at a final answer is clearly an arithmetic one.

Transcription errors

Deduct one mark if the only error in arriving at a final answer is because given or previously calculated data has clearly been misread but used correctly.

Fractions These are only acceptable where specified.

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper						
		IGCSE – October/November 2011	0625	32						
1	(a) $\Delta h = 0.0$ <u>use of</u> m 0.054 J/N	ngh		C1 C1 A1	[3]					
	` '	(b) $\frac{1}{2}mv^2$ = candidate's (a) 1.2 m/s ecf from (a)								
		of distance ÷ time 1 m/s		C1 A1						
		or wind resistance / friction / heat / thermal energy correct mention of experimental error e.g. width of	f cylinder	B1	[3]					
2		of $a = \Delta v/t$ in any form $a = \Delta v/t$ in any form $a = \Delta v/t$ ignore sign		C1 A1	[2]					
	(b) (i) 336	000 J		B1	[1]					
		<u>of</u> power × time 80 000 J		C1 A1	[2]					
	ecf	6 OR 0.54 from (i) and (ii) ept (= 180 000/840 000) 21% OR 0.21		B1	[1]					
	appropri	sensible for a moving vehicle, e.g. flywheel / capacate change for this device, for example: : speed or kinetic energy	citor / battery	M1						
		r: voltage or charge or electrical energy voltage or charge or electrical or chemical energy		A1	[2]					
3		 pgh in symbols, words or numbers 700 Pa or N/m² 								
	(b) <u>use of</u> F	ecf from (a)		C1 A1	[2]					
	(c) (30.9 – 2 use of a 5.24 m/s		ıltant	C1 C1 A1	[3]					

	Pa	ge 5		Mark Scheme: Teachers' version	Syllabus	Paper	r			
				IGCSE – October/November 2011	0625	32				
4	(a)	few		toms move more slowly ons OR less hard collisions <u>with walls / balloo</u> ure	<u>n</u>	B1 B1 B1	[3]			
	(b)	few		ce area of walls OR atoms further apart OR atom ons <u>with walls/balloon</u> (only penalise missing w ure		(b)) B1 B1	[3]			
5	(a)	con	duction	rod / target / anode copper / thickness of rod good conductor / increases amount of conducti	on (of thermal en	B1 B1 ergy) B1	[3]			
	(b)	con	nvection fins large surface area / number of fins / spaces between fins large contact with air / allows air to rise between fins				[3]			
	(c)	radi	ation	fins / black surface / end of rod black surface / large surface area good emitter / large radiating surface ignore a	bsorber	B1 B1 B1	[3]			
6	(a)	inci	dent ray	correct at 59°		B1	[1]			
	(b)	(i)	$(r = \sin^{-1}$	$n = \sin i/\sin r$ $n = \sin i/\sin r$ n =		C1 A1	[2]			
		(ii)	ray fron	n A to B AND angle of refraction = 40°		B1	[1]			
	(c)	refle	ected ray	at B, correct by eye		B1	[1]			
	(d)	eme	erging ra	y refracted away from normal		B1	[1]			
7	(a)	(i)	320-350	0 m/s condone 100 – 999 m/s		B1				
		(ii)	3 × 10 ⁸	m/s condone 2 – 4 × 10 ⁸ m/s		B1	[2]			
	(b)	use of $v = f\lambda$ correct evaluation of candidate's (a)(i) /1.2 (330 m/s gives 275 Hz)					[2]			
	(c)	(i)	(i) correct evaluation of candidate's (a)(i) × 4.8 (330 m/s gives 1584m)							

	Pa	ge 6	<u> </u>	M	ark So	cheme:	Teache	ers' ve	ersio	n	;	Syllabus	<u> </u>	Paper	
				IG	CSE -	- Octob	er/Nov	embe	r 201	1		0625		32	
		(ii)	OR OR	statemei distance thunder negligible	of thu and liq	ndersto ghtning	rm same	e as d	istan	ce trav		y sound		B1	[2]
8	(a)		compression rarefaction											B1 B1	[2]
	(b)	cone moves forward / in direction of travel of wave OR cone pushes air particles closer o.w.t.t.e. cone moves backwards / away from direction of travel of wave										B1			
		OR	cone	e causes	empty	spaces	o.w.t.	t.e.						B1	[2]
	(c)	(i)	loudr	ess incre	eases .	AND pit	ch same	Э						B1	
		(ii)	loudr	iess sam	e AND) pitch ii	ncrease	S						B1	[2]
9	(a)	(i)	1/R _p	= 1/R ₁ +	1/R ₂ C	PR (R _p =	:) R ₁ R ₂ /(R ₁ + F	R ₂₎ in	any fo	rm			B1	
		(ii)	1.5Ω											B1	[2]
	(b)	(i)	corre	ct positio	n, allo	w acros	s amme	eter as	s well					B1	
		(ii)		of <i>V = IR</i> OR 1.6			R, V							C1 A1	[3]
					00.10	ilacio o	, .b ,							,	[0]
	(c)	red	uced	accept c	urrent	decrea	ses							B1	[1]
10	(a)	dec	rease	s / low / v	ery lo	w / zero)							B1	[1]
	(b)	(i)	ecf fr e.g.	om (a) , b decrea light		ow / ver	y low / ze		stent			e's (a) gh / v. hig OR 0		B1	
			AND	dark		OR 0		Al	ND	dark	high	OR 1			
		(ii)	AND	switch switch			high low	OR OR						B1	[2]
	(c)	AN	D gate	•										B1	[1]
	(d)	transistor										B1	[1]		

Page 7		ge 7		k Scheme: Teachers' version	Syllabus	Paper	
			IGC	SE – October/November 2011	0625	32	
	(e)	(inp C hi tran	ıt) A high ıt) B high	n/works		M1 A1	[2]
11	(a)			es / rod cuts magnetic field d ignore current induced		B1 B1	[2]
	(b)	Mar	in (i) or (ii) rate o in (i) more (mag	ises/to R in (i)		B1 B1	
	(iii)	no deflection A	ND no (magnetic) field lines cut/no o	change of flux (linkage)	B1	[4]
12	(a)	(i)	x = 88 AND y = 38			B1	
		(ii)	50			B1	
	(iii)	38			B1	[3]
	(b)			neutrons / nucleons NOT different no 2 neutrons / 90 nucleons OR 2 moi	•	C1 A1	[2]