MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011		22

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
~ ~	a . 1 a

SC Special Case

www without wrong working

Qu.	Answers	Mark	Part Mark		
1	53.1	2	B1 C = 36.9 seen, must have C stated or marked on the diagram or M1 sin $A = \frac{4}{5}$ or tan $A = \frac{4}{3}$ but must have A stated		
2	$\sqrt{3} + \sqrt{6}$, π	2	-1 for each error or omission		
3	Working must be shown	2	M1 $\frac{14}{9}$ and $\frac{16}{9}$ M1 $\frac{14}{16} = \frac{7}{8}$ oe or visible cancelling		
4	0.8 ²	2	M1 conversion of $\frac{16}{27}$ (= 0.5(9)) and 0.8 ² (= 0.64) to decimals seen		
5	(6)€ or euros (with correct working)	2	M1 one of 6 × 1.9037 or 11.5 ÷ 1.9037 or 11.5 ÷ 6 seen		
6	3.322 cao	2	B1 3.3219() or 3.32(20) seen		
7	1.85×10^4	3	B2 18500 oe seen or M1 $4x = 74000$ or $x = 2 \times 10^4 - 1.5 \times 10^3$		
8	16	3	$\mathbf{M1} p = k\sqrt{q}$ $\mathbf{A1} k = 1.6 \text{ or } 8/5$		
9	1275, 1425	3	B1 85 or 95 or 0.85 or 0.95 M1 their LB or UB × 1500 where $85 \le LB < 90$ 90 < UB ≤ 95		
10	 (a) (0)700 or 7 am (b) 1700 or 5 pm 	2 1	$M1 100 - (5 \times \text{their}(22 - 6) + \text{their}(13 - 8))$ or better soi		
11	$\frac{4+bc}{c}$ or $\frac{4}{c}+b$ cao	3	M1 correct move completed M1 second correct move completed M1 third correct move completed		
12	x = 1 $y = 0.2 \text{ or } \frac{1}{5} \text{ only}$	3	M1 consistent mult and add/subtraction A1 one value correct after M awarded		
13	(a) 72(b) 36	1 1			
	(c) 54	2ft	ft 90 – (b) M1 $POQ = 108$		

	Page 3 Mark Scheme: Teachers' version				Syllabus	Paper
		IGCSE – May/June 2011			0580	22
14	(a) 84		1			
	(b) 15		1			
	(c) 6.28		2	M1 $\frac{120}{360} \times 2 \times \pi$	×3 oe	
15	$\frac{1-3x}{(x+1)(x+3)}$	<u>5)</u> www	4	M1 $(x + 1)^2 - x(x + 5)$ oe B1 $x^2 + x + x + 1$ B1 denominator(s) $(x + 1)(x + 5)$ or $x^2 + 6x + 5$		
16	(a) $\frac{1}{2}a - \frac{1}{2}a$	$\frac{1}{2}$ c oe	2	M1 correct but unsimplified e.g. $\frac{1}{2}\mathbf{a} + -\frac{1}{2}\mathbf{c}$		
	(b) $\frac{3}{4}$ a +	$\frac{3}{4}$ c oe	2	M1 correct but u	unsimplified	
17	(b) $\frac{3}{4}a + \frac{3}{4}a + \frac{3}{$	$r \frac{4}{x^{24}}$	2	B1 $4x^n$ B1 $\frac{k}{x^{24}}$ or kx^{-24} for any numerical k, n		
	(b) $\frac{x^2}{16}$		2	B1 $\frac{x^2}{k}$ or B1	$\frac{x^n}{16}$ SC1 $(\frac{x}{4})^2$	
18	(a) $(6, 1\frac{1}{2})$)	1			
	(b) $y = -\frac{1}{5}$	x + 4 oe	3	B1 correct nume B1 correct <i>c</i>	erical format B1 cor	rect m
19	(a) 8		1			
	(b) $4x - 9$		2	M1 $2(2x-3) - 3$	3 seen	
	(c) $2^{2(x+1)}$	or 2^{2x+2} or 4^{x+1}	2	M1 $(2^{x+1})^2$ seen		
20	(a) (i)		2	B1 correct line B1 2 sets of corr	rect arcs	
	(ii)		2	B1 correct line		
	R			B1 two sets of c	orrect arcs	
	(b)		1	correct region, s	haded or shown by	the letter R
21	(a) (i) (0) brackets essential	2	M1 $6 \times 2 + 3 \times$	-4 or 12 + -12	
	(ii) ($ \begin{array}{ccc} 12 & 18 \\ -8 & -12 \end{array} $	2	M1 any 2×2 m	atrix with 2 elemen	ts correct
	(b) $\frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -1\\3 \end{pmatrix}$	2	B1 $\frac{1}{2} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ set	en	
				$\mathbf{B1} k \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$	seen	