Paper 4G: Decision Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Auxiliary equation: $\lambda^{2}-\lambda-1=0$ and attempt to solve	M1	1.1b
	$\lambda=\frac{1 \pm \sqrt{5}}{2} \Rightarrow u_{n}=A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n}$, where A and B are arbitrary constants	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 2.2 \mathrm{a} \end{aligned}$
		(3)	
(b)	Use given conditions to obtain two equations in A and B	M1	1.1b
	Attempt to solve to obtain an A and B	M1	1.1b
	$u_{n}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}$	A1	1.1b
		(3)	
(6 marks)			

Notes:

(a)

M1: writes down correct auxiliary equation and attempts to solve using either the formula or completing the square
M1: writes down the general solution in the form $u_{n}=A\left(\lambda_{1}\right)^{n}+B\left(\lambda_{2}\right)^{n}$ using their roots λ_{1}, λ_{2} dependent on the first M mark
A1: $\quad \mathrm{CAO}$ - both lhs and rhs correct including defining A and B as (arbitrary) constants
(b)

M1: uses the correct initial conditions to write down two equations in A and B - for reference these equations are $A(1+\sqrt{5})+B(1-\sqrt{5})=2$ and $A(1+\sqrt{5})^{2}+B(1-\sqrt{5})^{2}=4$
M1: Attempts to solve these two equations (using a correct method but condone sign slips) to achieve a value for A and B
A1: CAO

Notes:

B1: CAO
M1: Finding all 6 shadow costs and the 4 improvement indices for the correct 4 entries candidates must clearly identify these two sets of results
A1: Shadow costs and II CAO
M1: A valid route, their most negative II chosen, only one empty square used, θ 's balance
A1: CAO
M1: Finding all 6 shadow costs and the 4 improvement indices for the correct 4 entries
A1: \quad Shadow costs and II CAO
M1: A valid route, their most negative II chosen, only one empty square used, θ 's balance
A1: $\quad \mathrm{CAO}$ - including the deduction of all entering and exiting cells
M1: Finding all 6 shadow costs and the 4 improvement indices for the correct 4 entries - this mark is depedent on all previous M marks which will therefore indicate a correct mathematical argument leading from the initial solution to the confirmation of the optimal solution

A1: \quad Shadow costs and II CAO
A1: \quad CSO including the correct reasoning that the solution is optimal because there are no negative IIs

\begin{tabular}{|c|c|c|c|}
\hline Question \& Scheme \& Marks \& AOs \\
\hline \multirow[t]{2}{*}{3(a)} \& Subtract each entry from a constant (eg 40) \& B1 \& 2.4 \\
\hline \& \& (1) \& \\
\hline \multirow[t]{3}{*}{(b)} \& \begin{tabular}{l}
\[
\text { e.g. }\left(\begin{array}{lllll}
\& \mathrm{P} \& \mathrm{Q} \& \mathrm{R} \& \mathrm{~S} \\
\mathrm{~A} \& 5 \& 5 \& 4 \& 2 \\
\mathrm{~B} \& 9 \& 2 \& 6 \& 0 \\
\mathrm{C} \& 2 \& 8 \& 4 \& 1 \\
\mathrm{D} \& 1 \& 7 \& 1 \& 4
\end{array}\right)
\] \\
Reducing row A by 2 , no reduction for row B , reduce row C by 1 and row \(D\) by 1 . No reduction of columns \(P, R\) and \(S\), reduce column Q by 2 .
\[
\left(\begin{array}{lllll}
\& \mathrm{P} \& \mathrm{Q} \& \mathrm{R} \& \mathrm{~S} \\
\mathrm{~A} \& 3 \& 3 \& 2 \& 0 \\
\mathrm{~B} \& 9 \& 2 \& 6 \& 0 \\
\mathrm{C} \& 1 \& 7 \& 3 \& 0 \\
\mathrm{D} \& 0 \& 6 \& 0 \& 3
\end{array}\right) \text { then }\left(\begin{array}{ccccc}
\& \mathrm{P} \& \mathrm{Q} \& \mathrm{R} \& \mathrm{~S} \\
\mathrm{~A} \& 3 \& 1 \& 2 \& 0 \\
\mathrm{~B} \& 9 \& 0 \& 6 \& 0 \\
\mathrm{C} \& 1 \& 5 \& 3 \& 0 \\
\mathrm{D} \& 0 \& 4 \& 0 \& 3
\end{array}\right)
\] \\
Three lines required to cover the zeros hence solution is not optimal - augment by 1
\[
\left(\begin{array}{lllll}
\& \mathrm{P} \& \mathrm{Q} \& \mathrm{R} \& \mathrm{~S} \\
\mathrm{~A} \& 2 \& 1 \& 1 \& 0 \\
\mathrm{~B} \& 8 \& 0 \& 5 \& 0 \\
\mathrm{C} \& 0 \& 5 \& 2 \& 0 \\
\mathrm{D} \& 0 \& 5 \& 0 \& 4
\end{array}\right)
\]
\end{tabular} \& B1
B1

M1
A1
B1
M1 \& 1.1 b
2.4

2.1
1.1 b
2.4

2.1

\hline \& A - S, B-Q, C-P, D-R \& A1 \& 2.2a

\hline \& \& (7) \&

\hline \multirow[t]{2}{*}{(c)} \& | $x_{i j}= \begin{cases}1 \text { if worker } i \text { does task } j \\ 0 & \text { otherwise }\end{cases}$ |
| :--- |
| Where $i \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$ and $j \in\{\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}\}$ |
| e.g. Minimise $\begin{aligned} & 5 x_{\mathrm{AP}}+5 x_{\mathrm{AQ}}+4 x_{\mathrm{AR}}+2 x_{\mathrm{AS}}+9 x_{\mathrm{BP}}+2 x_{\mathrm{BQ}}+6 x_{\mathrm{BR}}+ \\ & 2 x_{\mathrm{CP}}+8 x_{\mathrm{CQ}}+4 x_{\mathrm{CR}}+x_{\mathrm{CS}}+x_{\mathrm{DP}}+7 x_{\mathrm{DQ}}+x_{\mathrm{DR}}+4 x_{\mathrm{DS}} \end{aligned}$ |
| Subject to: $\begin{aligned} & \sum x_{i \mathrm{P}}=1, \sum x_{i \mathrm{Q}}=1, \sum x_{i \mathrm{R}}=1, \sum x_{i \mathrm{~S}}=1 \\ & \sum x_{\mathrm{Aj}}=1, \sum x_{\mathrm{B} j}=1, \sum x_{\mathrm{C} j}=1, \sum x_{\mathrm{D} j}=1 \end{aligned}$ | \& | B1 |
| :--- |
| B1 |
| B1 |
| M1 |
| A1 | \& 3.3

3.3

3.3

3.3
3.3

\hline \& \& (5) \&

\hline \multicolumn{4}{|r|}{(13 marks)}

\hline
\end{tabular}

Notes:

(a)

B1: valid statement regarding converting a max. problem to a min. problem
(b)

B1: CAO
B1: Correct statements regarding row and column reduction
M1: Simplifying the initial matrix by reducing rows and then columns
A1: CAO
B1: Correct statements regarding both max. number of lines to cover zeros and augmentation
M1: Develop an improved solution - need to see one double covered +e ; one uncovered -e ; and one single covered unchanged. 3 lines needed to 4 lines needed (so getting to the optimal table)
A1: CSO on final table (so must have scored all previous marks in this part) + deduction of the correct allocation
(c)

B1: possible values of $x_{i j}$ defined
B1: definine the set of values for i and j
B1: Correct objective function and either 'minimise' or 'maximise' (dependent on if problem is defined in terms of original values or modified values)
M1: at least four equations, unit coefficient and equal to 1
A1: CAO (all eight equations)

Question	Scheme	Marks	AOs
6(a)	$\begin{aligned} & C_{1}=3+3+3+5+7=21 \\ & C_{2}=8+5+3+6-3=19 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	e.g. the minimum flow out of the source S is at least $5+3+4=12$ and the maximum flow into the sink T is $6+10=16$	B1	2.4
		(1)	
(c)	The minimum flow into G is $1+1+1+3=6$ but the maximum flow out of G is 6 therefore the arcs into G must be at their lower capacities	B1	2.4
		(1)	
(d)		M1 A1	3.1a 1.1b
		(2)	
(e)	Maximum flow is 15	B1	1.1b
	The minimum flow out of the source is 12 but the flow out of C is at least $3+4=7$	B1	2.4
	Therefore the minimum flow through the network is $5+3+3+4=15$ which is equal to the maximum flow	B1	2.2a
		(3)	
(f)	Increase the upper capacity of arc BF to at least 9 and therefore increase the flow in this arc to 9	B1	2.1
	Therefore increase the flow in FH and HT to 10	B1	2.4
	The flow in GT decreases to 5 and all other arcs are unchanged	B1	2.2a
		(3)	
(12 marks)			

Notes:

(a)

B1: correct capacity for C_{1}
B1: correct capacity for C_{2}
(b)

B1: correct statement regarding the min. flow out of the sink and max. flow into the sink
(c)

B1: correct statement regarding the flow into node G
(d)

M1: consistent flow pattern (≥ 12) throughout the network - so the flow into each node must equal the flow out of each node (and this flow must be greater than or equal to 12 but not necessarily the maximum flow of 15) - one number only on each arc
A1: CAO
(e)

B1: CAO (for max. flow)
B1: Consideration of both the min. flow from the source and the flow through node C
B1: Completely correct argument that the max. flow = min. flow
(f)

B1: Correct argument regarding increasing the upper capacity of arc BF and hence the flow in that arc
B1: Correct reasoning regarding increasing the flow in arcs FH and HT
B1: Correct deduction that the flow in GT decreases to 5 and conclude that all other arcs are unchanged

1M1: First stage (May) completed. At least 3 rows, 'something' in each cell (but see M mark guidance above) including the correct structure (e.g. no value greater than 5 in the action column) in each of the first four columns
1A1: CAO for first stage.
2M1: Second stage (April) completed. At least 9 rows, something in each cell (see M mark guidance above) including the correct structure for the fifth (Value) column (e.g. bringing forward values from the previous stage)
2A1: CAO for second stage. No extra rows

3M1: Third stage (March) completed. At least 3 rows, something in each cell (see M mark guidance above)
3A1ft: CAO on the ft for third stage. No extra rows
4M1: Fourth stage (February) completed. At least 6 rows, something in each cell (see M mark guidance above)
4A1ft: CAO on the ft for fourth stage. No extra rows
5M1: Fifth stage (January) completed. At least 3 rows, something in each cell (see M mark guidance above)
5A1: CAO for the fifth stage. No extra rows
1B1: CAO - but must have scored all previous M marks
2B1: CAO - condone lack of units - but must have scored all previous M marks

