Paper 4: Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(i)	$602=3 \times 161+119$	M1	1.1b
	$161=119+42,119=2 \times 42+35$	M1	1.1b
	$42=35+7,35=5 \times 7, \mathrm{hcf}=7$	A1	1.1b
		(3)	
(ii)	Number of codes under old system $=5 \times 4 \times 4 \times 3 \times 2(=480)$	B1	3.1b
	Number of codes under new system $=4 \times 3 \times 7 \times 6 \times 5(=2520)$	B1	3.1b
	Subtracts first answer from second	M1	1.1b
	Increase in number of codes is 2040	A1	1.1b
		(4)	
(7 marks)			
Notes:			
(i) M1: Attempts Euclid's algorithm - (there may be an arithmetic slip finding 119) M1: Uses Euclid's algorithm a further two times with 161 and "their 119 " and then with "their 119 " and "their 42" A1: This should be accurate with all the steps shown			
(ii) B1: Correctly interprets the problem and uses the five odd digits and four even digits to form a correct product B1: Interprets the new situation using the four even digits, then the seven digits which have not been used, to form a correct product M1: Subtracts one answer from the other A1: Correct answer			

Question	Scheme	Marks	AOs
3(a)	Finds the characteristic equation $(2-\lambda)^{2}(4-\lambda)-(4-\lambda)=0$	M1	2.1
	So $(4-\lambda)\left(\lambda^{2}-4 \lambda+3\right)=0$ so $\lambda=4 *$	A1*	2.2a
	Solves quadratic equation to give	M1	1.1b
	$\lambda=1$ and $\lambda=3$	A1	1.1b
		(4)	
(b)	Uses a correct method to find an eigenvector	M1	1.1b
	Obtains a vector parallel to one of $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ or $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ or $\left(\begin{array}{r}3 \\ -3 \\ 1\end{array}\right)$	A1	1.1b
	Obtains two correct vectors	A1	1.1b
	Obtains all three correct vectors	A1	1.1b
		(4)	
(c)	Uses their three vectors to form a matrix	M1	1.2
	$\left(\begin{array}{ccc} 0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right) \quad \begin{gathered} \text { or } \\ \text { other correct answer with } \\ \text { columns in a different order } \end{gathered}$	A1	1.1b
		(2)	
(10 marks)			
Notes:			
(a) M1: Attempts to find the characteristic equation (there may be one slip) A1*: Deduces that $\lambda=4$ is a solution by the method shown or by checking that $\lambda=4$ satisfies the characteristic equation M1: Solves their quadratic equation A1: Obtains the two correct answers as shown above			
(b) M1: Uses a correct method to find an eigenvector A1: Obtains one correct vector (may be a multiple of the given vectors) A1: Obtains two correct vectors (may be multiples of the given vectors) A1: Obtains all three correct vectors (may be multiples of the given vectors)			

Question 3 notes continued

(c)

M1: Forms a matrix with their vectors as columns
A1: $\quad\left(\begin{array}{ccc}0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{ccc}1 & 0 & 3 \\ 1 & 0 & -3 \\ 1 & 1 & 1\end{array}\right)$ or $\left(\begin{array}{ccc}3 & 1 & 0 \\ -3 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ or other correct alternative

Question	Scheme	Marks	AOs
4(i)	If we assume $a b=b a$; as $a^{2} b=b a$ then $a b=a^{2} b$	M1	2.1
	So $a^{-1} a b b^{-1}=a^{-1} a^{2} b b^{-1}$	M1	2.1
	So $e=a$	A1	2.2a
	But this is a contradiction, as the elements e and a are distinct so $a b \neq b a$	A1	2.4
		(4)	
(ii)(a)	2 has order 4 and 4 has order 2	M1	1.1b
	7, 8 and 13 have order 4	A1	1.1b
	11 and 14 have order 2 and 1 has order 1	A1	1.1b
		(3)	
(ii)(b)	Finds the subgroup $\{1,2,4,8\}$ or the subgroup $\{1,7,4,13\}$	M1	1.1b
	Finds both and refers to them as cyclic groups, or gives generator 2 and generator 7	A1	2.4
	Finds $\{1,4,11,14\}$	B1	2.2a
	States each element has order 2 or refers to it as Klein Group	B1	2.5
		(4)	
(ii)(c)	J has an element of order 8 , (H does not) or J is a cyclic group (H is not) or other valid reason	M1	2.4
	They are not isomorphic	A1	2.2a
		(2)	
(13 marks)			

Notes:

(i)

M1: Proof begins with assumption that $a b=b a$ and deduces that this implies $a b=a^{2} b$
M1: A correct proof with working shown follows, and may be done in two stages
A1: Concludes that assumption implies that $e=a$
A1: Explains clearly that this is a contradiction, as the elements e and a are distinct so $a b \neq b a$
(ii)(a)

M1: Obtains two correct orders (usually the two in the scheme)
A1: Finds another three correctly
A1: Finds the final three so that all eight are correct

(ii)(b)

M1: Finds one of the cyclic subgroups
A1: Finds both subgroups and explains that they are cyclic groups, or gives generators 2 and 7
B1: Finds the non cyclic group
B1: Uses correct terms that each element has order 2 or refers to it as Klein Group
(ii)(c)

M1: Clearly explains how J differs from H
A1: Correct deduction

Question	Scheme	Marks	AOs
5(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\sinh 2 x$	B1	2.1
	So $S=\int \sqrt{1+\sinh ^{2} 2 x} \mathrm{~d} x$	M1	2.1
	$\therefore s=\int \cosh 2 x \mathrm{~d} x$	A1	1.1b
	$=\left[\frac{1}{2} \sinh 2 x\right]_{-\ln a}^{\ln a}$ or $[\sinh 2 x]_{0}^{\ln a}$	M1	2.1
	$=\sinh 2 \ln a=\frac{1}{2}\left[\mathrm{e}^{2 \ln a}-\mathrm{e}^{-2 \ln a}\right]=\frac{1}{2}\left(a^{2}-\frac{1}{a^{2}}\right) \quad($ so $k=1 / 2)$	A1	1.1b
		(5)	
(b)	$\frac{1}{2}\left(a^{2}-\frac{1}{a^{2}}\right)=2$ so $a^{4}-4 a^{2}-1=0$	M1	1.1b
	$a^{2}=2+\sqrt{5} \quad$ (and $a=2.06$ (approx.))	M1	1.1b
	When $x=\ln a, y=0$ so $\quad A=\frac{1}{2} \cosh (2 \ln a)$	M1	3.4
	Height $=A-0.5=$ awrt 0.62 m	A1	1.1b
		(4)	
(c)	The width of the base $=2 \ln a=1.4 \mathrm{~m}$	B1	3.4
		(1)	
(d)	A parabola of the form $y=0.62-1.19 x^{2}$, or other symmetric curve with its equation e.g. $0.62 \cos (2.2 x)$	M1A1	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$
		(2)	
(12 marks)			
Notes:			
(a) B1: Starts explanation by finding the correct derivative M1: Uses their derivative in the formula for arc length A1: Uses suitable identity to simplify the integrand and to obtain the expression in scheme M1: Integrates and uses appropriate limits to find the required arc length A1: Uses the definition of sinh to complete the proof and identifies the value for k			
(b) M1: Uses the formula obtained from the model and the length of the arch to create a quartic equation M1: Continues to use this model to obtain a quadratic and to obtain values for a M1: Attempts to find a value for A in order to find h A1: Finds a value for the height correct to 2 sf (or accept exact answer)			

Question 5 Notes continued

(c)

B1: Finds width to 2 sf i.e. 1.4 m
(d)

M1: Chooses or describes an even function with maximum point on the y axis
A1: Gives suitable equation passing through $(0,0.62)$ and $(0.7,0)$ and $(-0.7,0)$

Question	Scheme	Marks	AOs
6(a)	$(x+6)^{2}+y^{2}=4\left[(x-6)^{+} y^{2}\right]$	M1	2.1
	$x^{2}+y^{2}-20 x+36=0$ which is the equation of a circle*	A1*	2.2a
		(2)	
(b)		M1	1.1b
		A1	1.1b
		(2)	
(c)	Let $a=c+\mathrm{i} d$ and $a^{*}=c-\mathrm{i} d$ then $(c+\mathrm{i} d)(x-\mathrm{i} y)+(c-\mathrm{i} d)(x+\mathrm{i} y)=0$	M1	3.1a
	So $y=-\frac{c}{d} x$	A1	1.1b
	 The gradients of the tangents (from geometry) are $\pm \frac{4}{3}$	B1	3.1a
	So $-\frac{c}{d}= \pm \frac{4}{3}$ and $\frac{d}{c}=\mp \frac{3}{4}$	M1	3.1a
	So $\tan \theta= \pm \frac{3}{4}$	A1	1.1b
		(5)	

Q6 Notes:

(a)

M1: Obtains an equation in terms of x and y using the given information
$\mathbf{A 1 *}$: Expands and simplifies the algebra, collecting terms and obtains a circle equation correctly, deducing that this is a circle
(b)

M1: Draws a circle with centre at $(10,0)$
A1: (Radius is 8) so circle does not cross the y axis
(c)

M1: Attempts to convert line equation into a cartesian form
A1: Obtains a simplified line equation
B1: Uses geometry to deduce the gradients of the tangents
M1: Understands the connection between $\arg a$ and the gradient of the tangents and uses this connection
A1: Correct answers

Question	Scheme	Marks	AOs
7(a)	$I_{n}=\int_{0}^{\frac{\pi}{2}} \sin x \sin ^{n-1} x \mathrm{~d} x$	M1	2.1
	$=\left[-\cos x \sin ^{n-1} x\right]_{0}^{\frac{\pi}{2}}-(-) \int_{0}^{\frac{\pi}{2}} \cos ^{2} x(n-1) \sin ^{n-2} x \mathrm{~d} x$	A1	1.1b
	Obtains $=0-(-) \int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} x\right)(n-1) \sin ^{n-2} x \mathrm{~d} x$	M1	1.1b
	So $\quad I_{n}=(n-1) I_{n-2}-(n-1) I_{n}$ and hence $n I_{n}=(n-1) I_{n-2} *$	A1*	2.1
		(4)	
(b)	uses $I_{n}=\frac{(n-1)}{n} I_{n-2}$ to give $I_{10}=\frac{9}{10} I_{8}$ or $I_{2}=\frac{1}{2} I_{0}$	M1	3.1b
	So $I_{10}=\frac{9 \times 7 \times 5 \times 3 \times 1}{10 \times 8 \times 6 \times 4 \times 2} I_{0} \mathrm{x}$	M1	2.1
	$I_{0}=\frac{\pi}{2}$	B1	1.1b
	Required area is $2\left(I_{2}-I_{10}\right)=$ or $8 \times \frac{1}{4}\left(I_{2}-I_{10}\right)=$	M1	3.1b
	$=2\left(\frac{\pi}{4}-\frac{63 \pi}{512}\right)=\frac{65 \pi}{256} \mathrm{~m}^{2}$	A1	1.1b
		(5)	
(9 marks)			
Notes:			
(a) M1: Splits the integrand into the product shown and begins process of integration by parts (there may be sign errors) A1: Correct work M1: Uses limits on the first term and expresses $\cos ^{2}$ term in terms of $\sin ^{2}$ A1*: Completes the proof collecting I_{n} terms correctly with all stages shown			
(b) M1: Attempts to find I_{10} and/or I_{2} M1: Finds I_{10} in terms of I_{0} B1: Finds I_{0} correctly M1: States the expression needed to find the required area A1: Completes the calculation to give this exact answer			

Question	Scheme	Marks	AOs
8(a)	$u_{1}=1$ as there is only one way to go up one step	B1	2.4
	$u_{2}=2$ as there are two ways: one step then one step or two steps	B1	2.4
	If first move is one step then can climb the other $(n-1)$ steps in u_{n-1} ways. If first move is two steps can climb the other $(n-2)$ steps in u_{n-2} ways so $u_{n}=u_{n-1}+u_{n-2}$	B1	2.4
		(3)	
(b)	Sequence begins $1,2,3,5,8,13,21,34, \ldots$ so 34 ways of climbing 8 steps	B1	1.1b
		(1)	
(c)	To find general term use $u_{n}=u_{n-1}+u_{n-2}$ gives $\lambda^{2}=\lambda+1$	M1	2.1
	This has roots $\frac{1 \pm \sqrt{5}}{2}$	A1	1.1b
	So general form is $A\left(\frac{1+\sqrt{5}}{2}\right)^{n}+B\left(\frac{1-\sqrt{5}}{2}\right)^{n}$	M1	2.2a
	Uses initial conditions to find A and B reaching two equations in A and B	M1	1.1b
	Obtains $A=\left(\frac{1+\sqrt{5}}{2 \sqrt{5}}\right)$ and $B=-\left(\frac{1-\sqrt{5}}{2 \sqrt{5}}\right)$ and so when $n=400$ obtains $\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{401}-\left(\frac{1-\sqrt{5}}{2}\right)^{401}\right] *$	A1*	1.1b
		(5)	
(9 marks)			
Notes:			
(a) B1: Need to see explanation for $u_{1}=1$ B1: Need to see explanation for $u_{2}=2$ with the two ways spelled out B1: Need to see the first move can be one step or can be two steps and clear explanation of the iterative expression as in the scheme			
(b) B1: The answer is enough for this mark			

Question 8 notes continued

(c)

M1: Obtains this characteristic equation
A1: Solves quadratic - giving exact answers
M1: Obtains a general form
M1: Use initial conditions to obtains two equations which should be $A(1+\sqrt{5})+B(1-\sqrt{5})=2$ o.e. and $A(3+\sqrt{5})+B(3-\sqrt{5})=4$ but allow slips here

A1*: Must see exact correct values for A and B and conclusion given for $n=400$

