Questi	on Scheme	Marks	AOs	
1(i)	$602 = 3 \times 161 + 119$	M1	1.1b	
	$161 = 119 + 42, \ 119 = 2 \times 42 + 35$		1.1b	
	$42 = 35 + 7, \ 35 = 5 \times 7, \ hcf = 7$		1.1b	
(ii)	(ii) Number of codes under old system = $5 \times 4 \times 4 \times 3 \times 2$ (= 480)		3.1b	
	Number of codes under new system = $4 \times 3 \times 7 \times 6 \times 5$ (= 2520)	B1	3.1b	
	Subtracts first answer from second	M1	1.1b	
	Increase in number of codes is 2040		1.1b	
		(7 n	narks)	
Notes:				
M1:				
(ii)				
	Correctly interprets the problem and uses the five odd digits and four even orrect product	n digits to 1	form a	
	nterprets the new situation using the four even digits, then the seven digit ot been used, to form a correct product	ts which ha	ave	
	ubtracts one answer from the other Correct answer			

Paper 4: Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs	
2(a)	Let $z = x + i$	M1	2.1	
	$w = (x+i)^2 = (x^2-1)+2xi$	A1	1.1b	
	Let $w = u + iv$, then $u = (x^2 - 1)$ and $v = 2x$		2.1	
	$\Rightarrow v^2 = 4(u+1)$, which therefore represents a parabola		2.2a	
		(4)		
(b)	Im A M1: Sketches a parabola with symmetry about the real axis	M1	1.1b	
	-1 Q Re Al: Accurate sketch	A1	1.1b	
		(2)		
Notes:		(6 n	narks)	
 (a) M1: Translates the information that Im(z) = 1 into a cartesian form; e.g. z = x + i A1: Obtains a correct expression for w M1: Separates the real and imaginary parts and equates to u and v respectively A1ft: Obtains a quadratic equation and states that their quadratic equation represents a parabola 				
	ketches a parabola with symmetry about the real axis ccurate sketch			

Questio	n Scheme	Marks	AOs		
3(a)	Finds the characteristic equation $(2-\lambda)^2(4-\lambda)-(4-\lambda)=0$	M1	2.1		
	So $(4-\lambda)(\lambda^2-4\lambda+3)=0$ so $\lambda=4*$	A1*	2.2a		
	Solves quadratic equation to give	M1	1.1b		
	$\lambda = 1$ and $\lambda = 3$	A1	1.1b		
		(4)			
(b)	Uses a correct method to find an eigenvector	M1	1.1b		
	Obtains a vector parallel to one of $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ or $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ or $\begin{pmatrix} 3\\-3\\1 \end{pmatrix}$	A1	1.1b		
	Obtains two correct vectors	A1	1.1b		
	Obtains all three correct vectors	A1	1.1b		
(c)	Uses their three vectors to form a matrix		1.2		
	$\begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ or other correct answer with columns in a different order	Al	1.1b		
		(2)			
		(10 r	narks)		
Notes:					
A1*: D th M1: S	 Attempts to find the characteristic equation (there may be one slip) *: Deduces that λ = 4 is a solution by the method shown or by checking that λ = 4 satisfies the characteristic equation I: Solves their quadratic equation 				
A1: 0 A1: 0	Uses a correct method to find an eigenvector Obtains one correct vector (may be a multiple of the given vectors) Obtains two correct vectors (may be multiples of the given vectors) Obtains all three correct vectors (may be multiples of the given vectors)				

Question 3 notes continued(c)
M1: Forms a matrix with their vectors as columnsA1: $\begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 & 3 \\ 1 & 0 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 3 & 1 & 0 \\ -3 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ or other correct alternative

Question	Scheme	Marks	AOs
4(i)	If we assume $ab = ba$; as $a^2b = ba$ then $ab = a^2b$	M1	2.1
	So $a^{-1}abb^{-1} = a^{-1}a^2bb^{-1}$	M1	2.1
	So $e=a$	A1	2.2a
	But this is a contradiction, as the elements <i>e</i> and <i>a</i> are distinct so $ab \neq ba$	A1	2.4
		(4)	
(ii)(a)	2 has order 4 and 4 has order 2	M1	1.1b
	7, 8 and 13 have order 4	A1	1.1b
	11 and 14 have order 2 and 1 has order 1	A1	1.1b
		(3)	
(ii)(b)	Finds the subgroup $\{1, 2, 4, 8\}$ or the subgroup $\{1, 7, 4, 13\}$	M1	1.1b
	Finds both and refers to them as cyclic groups, or gives generator 2 and generator 7	A1	2.4
	Finds {1, 4, 11, 14}	B1	2.2a
	States each element has order 2 or refers to it as Klein Group	B1	2.5
		(4)	
(ii)(c)	J has an element of order 8, (H does not) or J is a cyclic group (H is not) or other valid reason	M1	2.4
	They are not isomorphic	A1	2.2a
		(2)	
		(13 n	narks)

Notes	Notes:		
(i) M1:	Proof begins with assumption that $ab = ba$ and deduces that this implies $ab = a^2b$		
M1:	A correct proof with working shown follows, and may be done in two stages		
A1:	Concludes that assumption implies that $e=a$		
A1:	Explains clearly that this is a contradiction, as the elements <i>e</i> and <i>a</i> are distinct so $ab \neq ba$		
(ii)(a)			
M1:	Obtains two correct orders (usually the two in the scheme)		
A1:	Finds another three correctly		
A1:	Finds the final three so that all eight are correct		
(ii)(b) M1:	Finds one of the cyclic subgroups		
A1:	Finds both subgroups and explains that they are cyclic groups, or gives generators 2 and 7		
B1:	Finds the non cyclic group		
B1:	Uses correct terms that each element has order 2 or refers to it as Klein Group		
(ii)(c)			
M1:	Clearly explains how J differs from H		
A1:	Correct deduction		

Question	Scheme	Marks	AOs		
5(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sinh 2x$	B1	2.1		
	So $S = \int \sqrt{1 + \sinh^2 2x} dx$	M1	2.1		
	$\therefore s = \int \cosh 2x dx$		1.1b		
	$= \left[\frac{1}{2}\sinh 2x\right]_{-\ln a}^{\ln a} \text{ or } \left[\sinh 2x\right]_{0}^{\ln a}$	M1	2.1		
	$= \sinh 2\ln a = \frac{1}{2} \left[e^{2\ln a} - e^{-2\ln a} \right] = \frac{1}{2} \left(a^2 - \frac{1}{a^2} \right) \qquad (\text{so } k = \frac{1}{2})$		1.1b		
		(5)			
(b)	$\frac{1}{2}\left(a^2 - \frac{1}{a^2}\right) = 2 \text{ so } a^4 - 4a^2 - 1 = 0$	M1	1.1b		
	$a^2 = 2 + \sqrt{5}$ (and $a = 2.06$ (approx.))	M1	1.1b		
	When $x = \ln a$, $y = 0$ so $A = \frac{1}{2} \cosh(2\ln a)$	M1	3.4		
	$Height = A - 0.5 = awrt \ 0.62m$	Al	1.1b		
		(4)			
(c)	The width of the base = $2\ln a = 1.4$ m	B1	3.4		
		(1)			
(d)	A parabola of the form $y = 0.62 - 1.19 x^2$, or other symmetric curve with its equation e.g. $0.62\cos(2.2x)$	M1A1	3.3 3.3		
		(2)			
		(12 r	narks)		
Notes:					
M1: Us A1: Us M1: Int	 Starts explanation by finding the correct derivative Uses their derivative in the formula for arc length Uses suitable identity to simplify the integrand and to obtain the expression in scheme Integrates and uses appropriate limits to find the required arc length 				
equ M1: Co M1: Att	Uses the formula obtained from the model and the length of the arch to create a quartic equation Continues to use this model to obtain a quadratic and to obtain values for a Attempts to find a value for A in order to find h Finds a value for the height correct to 2sf (or accept exact answer)				

Question 5 Notes continued		
(c) B1:	Finds width to 2 sf i.e. 1.4m	
(d) M1: A1:	Chooses or describes an even function with maximum point on the y axis Gives suitable equation passing through $(0, 0.62)$ and $(0.7, 0)$ and $(-0.7, 0)$	

6(a) $(x+6)^2 + y^2 = 4[(x-6)^+ y^2]$ x ² + y ² - 20x + 36 = 0 which is the equation of a circle* (b) y 0 10 x x x x x x x x x x	M1 A1* (2) M1 A1	2.1 2.2a 1.1b
(b) <i>y</i>	(2) M1	1.1b
	M1 A1	
	A1	
		1.1b
	,	
	(2)	
(c) Let $a = c + id$ and $a^* = c - id$ then (c + id)(x - iy) + (c - id)(x + iy) = 0	M1	3.1a
So $y = -\frac{c}{d}x$	A1	1.1b
The gradients of the tangents (from geometry) are $\pm \frac{4}{3}$	B1	3.1a
So $-\frac{c}{d} = \pm \frac{4}{3}$ and $\frac{d}{c} = \pm \frac{3}{4}$	M1	3.1a
So $\tan \theta = \pm \frac{3}{4}$	A1	1.1b
	(5)	

Q6 Notes:		
(a)		
M1:	Obtains an equation in terms of x and y using the given information	
A1*:	Expands and simplifies the algebra, collecting terms and obtains a circle equation correctly, deducing that this is a circle	
(b)		
M1:	Draws a circle with centre at $(10, 0)$	
A1:	(Radius is 8) so circle does not cross the y axis	
(c)		
M1:	Attempts to convert line equation into a cartesian form	
A1:	Obtains a simplified line equation	
B1:	Uses geometry to deduce the gradients of the tangents	
M1:	Understands the connection between $\arg a$ and the gradient of the tangents and uses this connection	
A1:	Correct answers	

Quest	ion	Scheme	Marks	AOs	
7(a) $I_n = \int_0^\infty$	$\int_{0}^{\frac{\pi}{2}} \sin x \sin^{n-1} x \mathrm{d}x$	M1	2.1	
	=[-c	$\cos x \sin^{n-1} x \Big]_{0}^{\frac{\pi}{2}} - (-) \int_{0}^{\frac{\pi}{2}} \cos^{2} x (n-1) \sin^{n-2} x \mathrm{d}x$	A1	1.1b	
	Obtains	$= 0 - (-) \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) (n - 1) \sin^{n-2} x dx$	M1	1.1b	
	Sc	$I_n = (n-1)I_{n-2} - (n-1)I_n$ and hence $nI_n = (n-1)I_{n-2}$ *	A1*	2.1	
			(4)		
(b)	uses I_n	$=\frac{(n-1)}{n}I_{n-2}$ to give $I_{10} = \frac{9}{10}I_8$ or $I_2 = \frac{1}{2}I_0$	M1	3.1b	
	So $I_{10} =$	$=\frac{9\times7\times5\times3\times1}{10\times8\times6\times4\times2}I_0\mathbf{x}$	M1	2.1	
		$I_0 = \frac{\pi}{2}$	B1	1.1b	
	Require	d area is $2(I_2 - I_{10}) = $ or $8 \times \frac{1}{4}(I_2 - I_{10}) =$	M1	3.1b	
		$= 2\left(\frac{\pi}{4} - \frac{63\pi}{512}\right) = \frac{65\pi}{256} \mathrm{m}^2$	A1	1.1b	
			(5)		
			(9 n	narks)	
Notes	:				
(a) M1: A1:	11: Splits the integrand into the product shown and begins process of integration by parts (there may be sign errors)				
M1:		n the first term and expresses \cos^2 term in terms of \sin^2			
A1*:	Completes the	e proof collecting I_n terms correctly with all stages shown			
(b)	A 44 4 6 6				
M1:	-	and I_{10} and/or I_2			
M1:	Finds I_{10} in te				
B1:	Finds I_0 corr	-			
M1: A1:	-	pression needed to find the required area e calculation to give this exact answer			

Question	Scheme	Marks	AOs	
8(a)	$u_1 = 1$ as there is only one way to go up one step	B1	2.4	
	$u_2 = 2$ as there are two ways: one step then one step or two steps	B1	2.4	
	If first move is one step then can climb the other $(n-1)$ steps in u_{n-1} ways. If first move is two steps can climb the other $(n-2)$ steps in u_{n-2} ways so $u_n = u_{n-1} + u_{n-2}$	B1	2.4	
		(3)		
(b)	Sequence begins 1, 2, 3, 5, 8, 13, 21, 34, so 34 ways of climbing 8 steps	B1	1.1b	
		(1)		
(c)	To find general term use $u_n = u_{n-1} + u_{n-2}$ gives $\lambda^2 = \lambda + 1$	M1	2.1	
	This has roots $\frac{1\pm\sqrt{5}}{2}$	A1	1.1b	
	So general form is $A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n$	M1	2.2a	
	Uses initial conditions to find <i>A</i> and <i>B</i> reaching two equations in <i>A</i> and <i>B</i>	M1	1.1b	
	Obtains $A = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}\right)$ and $B = -\left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right)$ and so when $n = 400$ obtains $\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{401} - \left(\frac{1-\sqrt{5}}{2}\right)^{401} \right] *$	A1*	1.1b	
		(5)		
		(9 n	narks)	
Notes:				
	ed to see explanation for $u_1 = 1$			
B1: Ne	Need to see explanation for $u_2 = 2$ with the two ways spelled out Need to see the first move can be one step or can be two steps and clear explanation of the iterative expression as in the scheme			
(b) B1: The	The answer is enough for this mark			

Question 8 notes continued

(c)

M1: Obtains this characteristic equation

- A1: Solves quadratic giving exact answers
- M1: Obtains a general form
- M1: Use initial conditions to obtain two equations which should be $A(1+\sqrt{5}) + B(1-\sqrt{5}) = 2$

o.e. and $A(3+\sqrt{5}) + B(3-\sqrt{5}) = 4$ but allow slips here

A1*: Must see exact correct values for A and B and conclusion given for n = 400