Ques	tion Scheme	Marks	AOs
1	Use Impulse-momentum principle	M1	2.1
	$2\mathbf{i} - \mathbf{j} = 0.5\mathbf{v} - 0.5(4\mathbf{i} + \mathbf{j})$	A1	1.1b
	$\frac{1}{2}\mathbf{v} = 4\mathbf{i} - \frac{1}{2}\mathbf{j}, \qquad \mathbf{v} = 8\mathbf{i} - \mathbf{j} \ (\mathrm{m} \ \mathrm{s}^{-1})$	A1	1.1b
	Use of KE = $\frac{1}{2}m \mathbf{v} ^2 - \frac{1}{2}m \mathbf{u} ^2$	M1	2.1
	$=\frac{1}{2} \times 0.5 \times \left\{ (64+1) - (16+1) \right\}$	A1	1.1b
	$=\frac{1}{4} \times 48 = 12$ (J) *	A1*	1.1b
		(6)	
		(6 1	narks)
Notes			
M1:	Difference of terms & dimensionally correct		
A1:	Correct unsimplified equation		
A1:	cao		
M1:	Must be a difference of two terms		
	Must be dimensionally correct		
A1:	Correct unsimplified equation		
A1*:	Complete justification of given answer		

Paper 3C/4C: Further Mechanics 1 Mark Scheme

Ques	tion	Scheme	Marks	AOs
2(a	a)	$R = 5g\cos\alpha \left(=5g \times \frac{4\sqrt{3}}{7} = 48.497\right)$	M1	3.4
		Force due to friction = $\mu \times 5g \cos \alpha$	M1	3.4
		Work-Energy equation	M1	3.4
		$\frac{1}{2} \times 5 \times 64 = 5 \times 9.8 \times 14 \sin \alpha + 14 \mu R$	A1	1.1b
		$\mu = 0.0913 \text{ or } 0.091$	Al	1.1b
			(5)	
(b)	Appropriate refinement	B1	3.5c
			(1)	
			(6 n	narks)
Notes	s:			
(a) M1: M1:		done sin/cos confusion of $\mu \times$ their R		
M1:		t be using work-energy. Requires all terms done sin/cos confusion, sign errors and their <i>R</i>		
A1:		ect in θ and μR		
A1:	Acce	ept 0.0913 or 0.091		
(b)				

B1: e.g.

- do not model the parcel as a particle and therefore take air resistance into account

- take into account the dimensions/uniformity of the parcel

Question	Scheme	Marks	AOs
- 3(a)	Use NEL to find the speed of particle after the first impact		
	$= eu = \frac{3}{4}u\frac{\pi}{2}$	B1	3.4
	Impulse = $\lambda mu = mv - mu = \pm \left[\frac{3}{4}mu - (-mu)\right]$	M1	3.1b
	$\lambda = \frac{7}{4}$	A1	1.1b
		(3)	
(b)	Use NEL to find the speed of the particle after the second impact = $\frac{3}{4} \times \frac{3}{4}u = \frac{9}{16}u$	B1	3.4
	Use of $s = vt$ to find total time	M1	3.1b
	$7 = \frac{2}{u} + \frac{4}{\frac{3}{4}u} + \frac{2}{\frac{9}{16}u} \left(= \frac{2}{u} + \frac{16}{3u} + \frac{32}{9u} \right)$	A1	1.1b
	Solve for <i>u</i> : $63u = 18 + 48 + 32$	M1	1.1b
	$u = \frac{98}{63} = \frac{14}{9} \left(=1.\dot{5}\right)$	A1	1.1b
		(5)	
		(8 n	narks)
Notes:			
M1: Mu	B1: Using Newton's experimental law as a model to find the speed after the first impactM1: Must be a difference of two terms, taking account of the change in direction of motion		
M1: Ne	Needs to be used for at least one stage of the journey		
M1: So	Solve their linear equation for u Accept 1.56 or better		

Question	Scheme	Marks	AOs
4(a)	Complete strategy to find the kinetic energy after the second impact	M1	3.1b
	Parallel to AB after collision: $u \cos 60^{\circ}$	M1	3.1b
	Perpendicular to <i>AB</i> after collision: $\frac{1}{\sqrt{3}}u\sin 60^\circ$	M1	3.4
	Components of velocity after first impact: $\frac{u}{2}$, $\frac{u}{2}$	A1	1.1b
	Parallel to <i>BC</i> after collision: $\frac{u}{2} \left(u \times \frac{1}{\sqrt{3}} \sin 60^{\circ} \right)$	M1	3.1b
	Perpendicular to <i>BC</i> after collision: $\sqrt{\frac{2}{5}} \times \frac{u}{2} \left(= \frac{1}{\sqrt{10}} u \right)$ $\left(\sqrt{\frac{2}{5}} \times u \cos 60^{\circ} \right)$	M1	3.4
	Components of velocity after second impact: $\frac{u}{2}$, $\frac{u}{\sqrt{10}}$	A1	1.1b
	Final KE = $\frac{1}{2}m\left(\frac{u^2}{4} + \frac{u^2}{10}\right) \left(=\frac{mu^2}{2} \times \frac{7}{20}\right)$		
	Fraction of initial KE = $\frac{\frac{mu^2}{2} \times \frac{7}{20}}{\frac{mu^2}{2}} = \frac{7}{20} = 35\% $ *	A1*	2.2a
		(8)	
(b)	The answer is too large - rough surface means resistance so final speed will be lower	B1	3.5a
		(1)	
		(9 ו	marks)
M1:UseA1:BothM1:UseM1:UseA1:BothM1:Corr	of CLM parallel to the wall. Condone sin/cos confusion NEL as a model to find the speed perpendicular to the wall. Condone sin/co a components correct with trig substituted (seen or implied) of CLM parallel to the wall. Condone sin/cos confusion NEL as a model to find the speed perpendicular to the wall. Condone sin/co a components correct with trig substituted (seen or implied) rect expression for total KE using their components after 2nd collision ain given answer with sufficient working to justify it		
(b) B1: Clea			

Ques	stion Scheme	Marks	AOs
5(a	a) Use of $P = Fv$: $F = \frac{12000}{20}$	B1	3.3
	Equation of motion: $F - (200 + 2v) = 600a$	M1	3.4
	600 - 240 = 600a	Alft	1.1b
	$360 = 600a, a = 0.6 \text{ (m s}^{-2}\text{)}$	A1	1.1b
		(4)	
(b	D) Equation of motion:	M1	3.3
	12000 (200 2) (00 i 0 (00 0 0	A1	1.1b
	$\frac{12000}{w} - (200 + 2w) - 600g\sin\theta = -600 \times 0.0$	A1	1.1b
	3 term quadratic and solve: $2w^2 + 590w - 12000 = 0$	M1	1.1b
	$w = \frac{-590 + \sqrt{590^2 + 96000}}{4} = 19.1 (\text{m s}^{-1})$	A1	1.1b
		(5)	
	·	(9)	marks)
Notes	s:		
(a) B1:	600 or equivalent		
M1:	Use the model to form the equation of motion		
	Must include all terms .Condone sign errors		
A1ft:	Correct for their F		
A1:	cao		
(b)			
M1:	Use the model to form the equation of motion All terms needed. Condone sign errors and sin/cos confusion		
4.1			
A1:	All correct A1A1 One error A1A0		
		o form o 3 term quad	
М1.	Dependent on the preceding M1. Use the equation of motion to		rane
M1:	Dependent on the preceding M1. Use the equation of motion to in w only	o ionn a 5-tenn quae	ratic

Question	Scheme	Marks	AOs
6(a)	i i i i i i i i i i		
	Overall strategy to find \mathbf{V}_A	M1	3.1a
	Velocity of A perpendicular to loc after collision = $3j$ (m s ⁻¹)	B1	3.4
	CLM parallel to loc	M1	3.1a
	$2m \times 3 - 3m \times 5 = 3mw - 2mv$ (-9 = 3w-2v)	Al	1.1b
	Correct use of impact law	M1	3.1a
	$v + w = \frac{1}{4}(3+5) (=2)$	A1	1.1b
	Solve for w 3w-2v = -9 2v+2w = 4		
	$\mathbf{v}_B = -\mathbf{i} + 2\mathbf{j} \ (\mathrm{m \ s^{-1}}),$	A1ft	1.1b
		(7)	
(b)	$\cos\theta = \frac{(-5\mathbf{i}+2\mathbf{j})\cdot(-\mathbf{i}+2\mathbf{j})}{\sqrt{29}\sqrt{5}}$	M1	3.1a
	$\theta = 41.63^{\circ} = 42^{\circ}$ (nearest degree)	A1	1.1b
	Alternative method: $\tan^{-1} 2 - \tan^{-1} \frac{2}{5} = 41.63^{\circ} = 42^{\circ}$		
	(nearest degree)		
		(2)	
Notes:		(9)	marks)
(a)			
M1: Cor	rect overall strategy to form sufficient equations and solve for \mathbf{v}_A		
B1: Use	the model to find the component of \mathbf{V}_A perpendicular to the line of	centres	
	CLM to form equation in v and w . Need all 4 terms, dimensionally	correct	
	Correct unsimplified Must be used the right way round		
A1: Cor	Correct unsimplified		
	correct. Follow their 2j		
	nplete method for finding the required angle. Follow their \mathbf{v}_B		
A1: cao			

Question	Scheme	Marks	AOs
7(a)	In equilibrium \Rightarrow no resultant vertical force	M1	2.1
	$\frac{3mgx}{a} = mg$	A1	1.1b
	$x = \frac{a}{3} , \qquad d = \frac{4}{3}a *$	A1*	2.2a
		(3)	
(b)	Equation of motion:	M1	3.1a
	$\frac{3mga}{a} - mg = m\ddot{x}$	A1	1.1b
	$\ddot{x} = 2g$	Al	1.1b
		(3)	
(c)	Max speed at equilibrium position	B1	3.1a
	Work energy & use of EPE = $\frac{\lambda x^2}{2a}$	M1	3.1a
	$\frac{3mga^{2}}{2a} = \frac{3mg\left(\frac{a}{3}\right)^{2}}{2a} + \frac{1}{2}mv^{2} + mg\frac{2a}{3}$	A1 A1	1.1b 1.1b
	$\frac{1}{2}v^{2} = ga\left(\frac{3}{2} - \frac{1}{6} - \frac{2}{3}\right) = \frac{2}{3}ga, \qquad v = \sqrt{\frac{4ga}{3}}$	A1	1.1b
		(5)	
(d)	At max ht. $KE = 0$. EPE lost = GPE gained	M1	3.1a
	$\frac{3mga^2}{2a} = mgh$	A1	1.1b
	$OB = \frac{a}{2}$	A1	1.1b
		(3)	
	1	(14 r	narks)

Ques	Question 7 notes:	
(a)		
M1:	Use $T = \frac{\lambda x}{a}$ to form equation for equilibrium	
A1:	Correct unsimplified equation	
A1*:	Requires sufficient working to justify given answer	
	plus a 'statement' that the required result has been achieved	
(b)		
M1:	Use $T = \frac{\lambda x}{a}$ to form equation of motion	
	Need all 3 terms. Condone sign errors	
A1:	Correct unsimplified equation	
A1:	cao	
(c)		
B1:	Seen or implied	
M1:	Form work-energy equation. All 4 terms needed	
	Condone sign errors	
A1:	Correct unsimplified equation A1A1	
	One error in the equation A1A0	
A1:	cao	
(d)		
M1:	Form energy equation	
A1:	Correct unsimplified equation	
A1:	cao	

Question	Scheme	Marks	AOs
8(a)	$\xrightarrow{2u}$ \overleftarrow{u}		
	$ \left(\begin{array}{c} P\\ 2m \end{array}\right) \left(\begin{array}{c} Q\\ 5m \end{array}\right) $		
	$\langle w \rangle$		
	Complete overall strategy to find v	M1	3.1a
	Use of CLM	M1	3.1a
	$2m \times 2u - 5m \times u = 5m \times v - 2m \times w , (-u = 5v - 2w)$	A1	1.1b
	Use of Impact law:	M1	3.1a
	v + w = e(2u + u)	A1	1.1b
	Solve for v: $ \begin{array}{rcl} -u &= 5v - 2w \\ 6eu &= 2v + 2w \end{array} $		
	$7v = u(6e-1) \left(v = \frac{u}{7}(6e-1)\right)$	A1	1.1b
	Direction of Q reversed: $v > 0$	M1	3.4
	$\Rightarrow 1 \ge e > \frac{1}{6}$	A1	1.1b
		(8)	
(b)	$e = \frac{1}{3} \implies v = \frac{u}{7}, w = \frac{6u}{7}$	B1	2.1
	Equation for KE lost	M1	2.1
	$\frac{1}{2} \times 2m \left(4u^2 - \frac{36u^2}{49} \right) + \frac{1}{2} \times 5m \left(u^2 - \frac{u^2}{49} \right)$	A1	1.1b
	$\left[\frac{-2}{2}\times 2m\left(4u - \frac{-49}{49}\right) + \frac{-2}{2}\times 5m\left(u - \frac{-49}{49}\right)\right]$	A1	1.1b
	$\frac{1}{2}mu^2\left(8-\frac{72}{49}+5-\frac{5}{49}\right) = \frac{40mu^2}{7} *$	A1*	2.2a
		(5)	
(c)	Increase $e \Rightarrow$ more elastic \Rightarrow less energy lost	B1	2.2a
		(1)	
		(14	marks)

Quest	tion 8 notes:
(a)	
M1:	Complete strategy to form sufficient equations in v and w and solve for v
M1:	Use CLM to form equation in v and w
	Needs all 4 terms & dimensionally correct
A1:	Correct unsimplified equation
M1:	Use NEL as a model to form a second equation in v and w. Must be used the right way round
A1:	Correct unsimplified equation
A1:	for v or 7v correct
M1:	Use the model to form a correct inequality for their v
A1:	Both limits required
(b)	
B1:	Or equivalent statements
M1:	Terms of correct structure combined correctly
A1:	Fully correct unsimplified A1A1
	One error on unsimplified expression A1A0
A1*:	cso. plus a 'statement' that the required result has been achieved
(c)	
B1:	"less energy lost" or equivalent