Paper 3C/4C: Further Mechanics 1 Mark Scheme

Question	Scheme		Marks	AOs
1	Use Impulse-momentum principle		M1	2.1
	$2 \mathbf{i}-\mathbf{j}=0.5 \mathbf{v}-0.5(4 \mathbf{i}+\mathbf{j})$		A1	1.1 b
	$\frac{1}{2} \mathbf{v}=4 \mathbf{i}-\frac{1}{2} \mathbf{j}, \quad \mathbf{v}=8 \mathbf{i}-\mathbf{j}\left(\mathrm{m} \mathrm{s}^{-1}\right)$		A1	1.1b
	Use of $\mathrm{KE}=\frac{1}{2} m\|\mathbf{v}\|^{2}-\frac{1}{2} m\|\mathbf{u}\|^{2}$		M1	2.1
	$=\frac{1}{2} \times 0.5 \times\{(64+1)-(16+1)\}$		A1	1.1b
	$=\frac{1}{4} \times 48=12$ (J)		A1*	1.1b
			(6)	
(6 marks)				
Notes:				
M1: Difference of terms \& dimensionally correct A1: Correct unsimplified equation A1: cao M1: Must be a difference of two terms Must be dimensionally correct A1: Correct unsimplified equation A1*: Complete justification of given answer				

Question	Scheme	Marks	AOs
2(a)	$R=5 g \cos \alpha\left(=5 g \times \frac{4 \sqrt{3}}{7}=48.497 \ldots\right)$	M1	3.4
	Force due to friction $=\mu \times 5 g \cos \alpha$	M1	3.4
	Work-Energy equation	M1	3.4
	$\frac{1}{2} \times 5 \times 64=5 \times 9.8 \times 14 \sin \alpha+14 \mu R$	A1	1.1b
	$\mu=0.0913$ or 0.091	A1	1.1b
		(5)	
(b)	Appropriate refinement	B1	3.5c
		(1)	
(6 marks)			
Notes:			
(a) M1: Condone $\sin /$ cos confusion M1: Use of $\mu \times$ their R M1: Must be using work-energy. Requires all terms Condone $\sin /$ cos confusion, sign errors and their R A1: \quad Correct in θ and μR A1: Accept 0.0913 or 0.091			
(b) B1: e.g. - do not model the parcel as a particle and therefore take air resistance into account - take into account the dimensions/uniformity of the parcel			

Question	Scheme	Marks	AOs
3(a)	Use NEL to find the speed of particle after the first impact $=e u=\frac{3}{4} u \frac{\pi}{2}$	B1	3.4
	Impulse $=\lambda m u=m v-m u= \pm\left[\frac{3}{4} m u-(-m u)\right]$	M1	3.1b
	$\lambda=\frac{7}{4}$	A1	1.1b
		(3)	
(b)	Use NEL to find the speed of the particle after the second impact $=\frac{3}{4} \times \frac{3}{4} u=\frac{9}{16} u$	B1	3.4
	Use of $s=v t$ to find total time	M1	3.1b
	$7=\frac{2}{u}+\frac{4}{\frac{3}{4} u}+\frac{2}{\frac{9}{16} u}\left(=\frac{2}{u}+\frac{16}{3 u}+\frac{32}{9 u}\right)$	A1	1.1b
	Solve for u : $\quad 63 u=18+48+32$	M1	1.1b
	$u=\frac{98}{63}=\frac{14}{9}(=1 . \dot{5})$	A1	1.1b
		(5)	
(8 marks)			
Notes:			
(a) B1: Using Newton's experimental law as a model to find the speed after the first impact M1: Must be a difference of two terms, taking account of the change in direction of motion A1: cao			
(b) B1: Using NEL as a model to find the speed after the second impact M1: Needs to be used for at least one stage of the journey A1: Ur equivalent M1: Solve their linear equation for u A1: Accept 1.56 or better			

Question	Scheme	Marks	AOs
4(a)	Complete strategy to find the kinetic energy after the second impact	M1	3.1b
	Parallel to $A B$ after collision: $u \cos 60^{\circ}$	M1	3.1b
	Perpendicular to $A B$ after collision: $\frac{1}{\sqrt{3}} u \sin 60^{\circ}$	M1	3.4
	Components of velocity after first impact: $\frac{u}{2}, \frac{u}{2}$	A1	1.1b
	Parallel to $B C$ after collision: $\frac{u}{2}\left(u \times \frac{1}{\sqrt{3}} \sin 60^{\circ}\right)$	M1	3.1b
	Perpendicular to $B C$ after collision: $\sqrt{\frac{2}{5}} \times \frac{u}{2}\left(=\frac{1}{\sqrt{10}} u\right)$ $\left(\sqrt{\frac{2}{5}} \times u \cos 60^{\circ}\right)$	M1	3.4
	Components of velocity after second impact: $\frac{u}{2}, \frac{u}{\sqrt{10}}$	A1	1.1b
	Final KE $=\frac{1}{2} m\left(\frac{u^{2}}{4}+\frac{u^{2}}{10}\right) \quad\left(=\frac{m u^{2}}{2} \times \frac{7}{20}\right)$		
	Fraction of initial $\mathrm{KE}=\frac{\frac{m u^{2}}{2} \times \frac{7}{20}}{\frac{m u^{2}}{2}}=\frac{7}{20}=35 \%$ *	A1*	2.2a
		(8)	
(b)	The answer is too large - rough surface means resistance so final speed will be lower	B1	3.5a
		(1)	
(9 marks)			
Notes:			
(a) M1: Use of CLM parallel to the wall. Condone sin/cos confusion M1: Use NEL as a model to find the speed perpendicular to the wall. Condone sin/cos confusion A1: Both components correct with trig substituted (seen or implied) M1: Use of CLM parallel to the wall. Condone sin/cos confusion M1: Use NEL as a model to find the speed perpendicular to the wall. Condone sin/cos confusion A1: Both components correct with trig substituted (seen or implied) M1: Correct expression for total KE using their components after 2nd collision A1*: Obtain given answer with sufficient working to justify it			
(b) B1: Clear explanation of how the modelling assumption has affected the outcome			

Question	Scheme	Marks	AOs
5(a)	Use of $P=F v: F=\frac{12000}{20}$	B1	3.3
	Equation of motion: $F-(200+2 v)=600 a$	M1	3.4
	$600-240=600 a$	A1ft	1.1 b
	$360=600 a, a=0.6\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	1.1b
		(4)	
(b)	Equation of motion:	M1	3.3
	$\frac{12000}{w}-(200+2 w)-600 g \sin \theta=-600 \times 0.05$	A1 A1	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	3 term quadratic and solve: $2 w^{2}+590 w-12000=0$	M1	1.1b
	$w=\frac{-590+\sqrt{590^{2}+96000}}{4}=19.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	1.1b
		(5)	
(9 marks)			
Notes:			
(a) B1: 600 or equivalent M1: Use the model to form the equation of motion Must include all terms .Condone sign errors A1ft: Correct for their F A1: cao			
(b) M1: Use the model to form the equation of motion All terms needed. Condone sign errors and \sin / \cos confusion A1: All correct A1A1 One error A1A0 M1: Dependent on the preceding M1. Use the equation of motion to form a 3-term quadratic in w only A1: Accept 19. Do not accept more than 3 s.f.			

| Question | Marks | AOs |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 (a)}$ | | |

Question	Scheme	Marks	AOs
7(a)	In equilibrium \Rightarrow no resultant vertical force	M1	2.1
	$\frac{3 m g x}{a}=m g$	A1	1.1b
	$x=\frac{a}{3}, \quad d=\frac{4}{3} a \quad *$	A1*	2.2a
		(3)	
(b)	Equation of motion:	M1	3.1a
	$\frac{3 m g a}{a}-m g=m \ddot{x}$	A1	1.1b
	$\ddot{x}=2 g$	A1	1.1b
		(3)	
(c)	Max speed at equilibrium position	B1	3.1a
	Work energy \& use of EPE $=\frac{\lambda x^{2}}{2 a}$	M1	3.1a
	$\frac{3 m g a^{2}}{2 a}=\frac{3 m g\left(\frac{a}{3}\right)^{2}}{2 a}+\frac{1}{2} m v^{2}+m g \frac{2 a}{3}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\frac{1}{2} v^{2}=g a\left(\frac{3}{2}-\frac{1}{6}-\frac{2}{3}\right)=\frac{2}{3} g a, \quad v=\sqrt{\frac{4 g a}{3}}$	A1	1.1b
		(5)	
(d)	At max ht. KE = 0. EPE lost $=$ GPE gained	M1	3.1a
	$\frac{3 m g a^{2}}{2 a}=m g h$	A1	1.1b
	$O B=\frac{a}{2}$	A1	1.1b
		(3)	
(14 marks)			

Question 7 notes:

(a)

M1: Use $T=\frac{\lambda x}{a}$ to form equation for equilibrium
A1: Correct unsimplified equation
A1*: Requires sufficient working to justify given answer plus a 'statement' that the required result has been achieved
(b)

M1: Use $T=\frac{\lambda x}{a}$ to form equation of motion
Need all 3 terms. Condone sign errors
A1: Correct unsimplified equation
A1: cao
(c)

B1: Seen or implied
M1: Form work-energy equation. All 4 terms needed
Condone sign errors
A1: Correct unsimplified equation A1A1
One error in the equation A 1 A 0
A1: cao
(d)

M1: Form energy equation
A1: Correct unsimplified equation
A1: cao

Question	Scheme	Marks	AOs
8(a)			
	Complete overall strategy to find v	M1	3.1a
	Use of CLM	M1	3.1a
	$2 m \times 2 u-5 m \times u=5 m \times v-2 m \times w,(-u=5 v-2 w)$	A1	1.1b
	Use of Impact law:	M1	3.1a
	$v+w=e(2 u+u)$	A1	1.1b
	$\begin{array}{ll}\text { Solve for } v: & -u=5 v-2 w \\ 6 e u=2 v+2 w\end{array}$		
	$7 v=u(6 e-1) \quad\left(v=\frac{u}{7}(6 e-1)\right)$	A1	1.1b
	Direction of Q reversed: $\quad v>0$	M1	3.4
	$\Rightarrow 1 \geq e>\frac{1}{6}$	A1	1.1b
		(8)	
(b)	$e=\frac{1}{3} \Rightarrow v=\frac{u}{7}, w=\frac{6 u}{7}$	B1	2.1
	Equation for KE lost	M1	2.1
	$\frac{1}{2} \times 2 m\left(4 u^{2}-\frac{36 u^{2}}{49}\right)+\frac{1}{2} \times 5 m\left(u^{2}-\frac{u^{2}}{49}\right)$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\frac{1}{2} m u^{2}\left(8-\frac{72}{49}+5-\frac{5}{49}\right)=\frac{40 m u^{2}}{7}$ *	A1*	2.2a
		(5)	
(c)	Increase $e \Rightarrow$ more elastic \Rightarrow less energy lost	B1	2.2a
		(1)	
(14 marks)			

Question 8 notes:

(a)

M1: Complete strategy to form sufficient equations in v and w and solve for v
M1: Use CLM to form equation in v and w
Needs all 4 terms \& dimensionally correct
A1: Correct unsimplified equation
M1: Use NEL as a model to form a second equation in v and w. Must be used the right way round
A1: Correct unsimplified equation
A1: \quad for v or $7 v$ correct
M1: Use the model to form a correct inequality for their v
A1: Both limits required
(b)

B1: Or equivalent statements
M1: Terms of correct structure combined correctly
A1: Fully correct unsimplified A1A1
One error on unsimplified expression A1A0
A1*: cso. plus a 'statement' that the required result has been achieved
(c)

B1: "less energy lost" or equivalent

