Quest	tion	Sch	neme	Marks	AOs
Q	P1 $H_0: \lambda = 5 \ (\lambda = 2.5) H_1: \lambda > 5 \ (\lambda > 2.5)$		B1	2.5	
		<i>X</i> ~F	Po (2.5)	B1	3.3
		Method 1:	Method 2:		
	Р	$P(X \ge 7) = 1 - P(X \le 6)$ = 1 - 0.9858	$P(X \ge 5) = 0.1088$ $P(X \ge 6) = 0.042$	M1	1.1b
		= 0.0142	$\operatorname{CR} X \ge 6$	A1	1.1b
	0 Ri le	$.0142 < 0.05$ $7 \ge 6$ or 7 is i eject H ₀ . There is evidence at t vel of pollution has increased.	in critical region or 7 is significant he 5% significance level that the or scientists claim is justified	Alcso	2.2b
		11	5	(5 r	narks)
Notes:					
B1:	B1: Both hypotheses correct using λ or μ and 5 or 2.5				
B1:	1: Realising that the model Po(2.5) is to be used. This may be stated or used				
M1:	: Using or writing $1 - P(X \le 6)$ or $1 - P(X < 7)$				
	a correct CR or $P(X \ge 5) = awrt 0.109$ and $P(X \ge 6) = awrt 0.042$				
A1:	awrt 0.0142 or CR $X \ge 6$ or $X > 5$				
M1:	A fully correct solution and drawing a correct inference in context				

Paper 3: Further Statistics 1 Mark Schemes

Questio	n Scheme	Marks	AOs	
Q2(a)	$P(X \ge 1) = 1 - P(X = 0)$ 1 - P(X = 0) = 0.049	B1	3.1b	
	P(X=0) = 0.951	B1	1.1b	
	$x^5 = 0.951$ x = 0.99	M1	3.1b	
	<i>p</i> = 0.01	A1	1.1b	
	X~B(1000, 0.01)	M1	3.3	
	Mean = $np = 10$	Alft	1.1b	
	Variance = $np(1-p) = 9.9$	Alft	1.1b	
		(7)		
(b)	$X \sim \text{Po}(``10")$ then require: $P(X > 6) = 1 - P(X \le 6)$	M1	3.4	
	= 1 - 0.1301			
	= 0.870	A1	1.1b	
		(2)		
(c)	The approximation is valid as : the number of calls is large	B1	2.4	
	The probability of connecting to the wrong agent is small	B1	2.4	
		(2)		
(d)	The answer is accurate to 2 decimal place	B1	3.2b	
		(1)		
	· ·	(12 n	narks)	
Notes:				
(a) B1: Realising that the P(at least 1 call) = $1 - P(X = 0)$ B1: Calculating P(X = 0) = 0.951 M1: Forming the equation $x^5 =$ "their 0.951" may be implied by $p = 0.01$ A1: 0.01 only M1: Realising the need to use the model B(1000, 0.01) This may be stated or used A1: Mean =10 or ft their p but only if $0 A1: Var = 9.9 or ft their p but only if 0$				
M1: U A1: a	Using the model Po("their 10") (this may be written or used) and $1 - P$ ($X \le 6$) awrt 0.870 Award M1 A1 for awrt 0.870 with no incorrect working			

Question 2 notes continued

(c)

B1: Explaining why approximation is valid - need the context of number and calls

B1: Need the context connecting, wrong agent

(d)

B1: Evaluating the accuracy of their answer in (b). Allow 2 significant figures

Question	Sche	eme	Marks	AOs
Q3(a)	Expected value for $2 = 150 \times P(X = 2)$		M1	3.4
	= 28.3015		A1	1.1b
	Expected value for 4 or more = $150 - (53.8 + 56.6 + 28.3 + 8.9)$ = 2.4		Alft	1.1b
	H ₀ : Bin(20, 0.05) is a suitable model H ₁ : Bin(20, 0.05) is not a suitable model		B1	2.5
	Combining last two groups			
		≥ 3	M1	2.1
	Observed frequency	19		
	Expected frequency	11.3		
	v = 4 - 1 = 3		B1	1.1b
	Critical value, $\chi^2 (0.05) = 7.815$		B1	1.1a
	Test statistic = $\frac{(43-53.8)^2}{53.8} + \frac{(62)^2}{53.8}$	$\frac{(-56.6)^2}{56.6} + \dots$	M1	1.1b
		= 8.117	A1	1.1b
	In critical region, sufficient evider Significant evidence at 5% level t	nce to reject H_0 , accept H_1 o reject the manager's model	A1	3.5a
			(10)	
(b)	v = 4 - 2 = 2			
	4 classes due to pooling		B1	2.4
	2 restrictions (equal total and mea	n/proportion)	B1	2.4
			(2)	
(c)	H ₀ : Binomial distribution is a goo H ₁ : Binomial distribution is not a	d model good model	B1	3.4
	Critical value, $\chi^2 (0.05) = 5.991$ Test statistic is not in critical region H ₀ There is evidence that the Binomi	on, insufficient evidence to reject al distribution is a good model	B1	3.5a
			(2)	
			(14 n	narks)

Notes	Notes:		
(a)			
M1:	Using the binomial model $150 \times p^2 \times (1-p)^{18}$ may be implied by 28.3		
A1:	awrt 28.3		
A1:	awrt 2.4 or ft their "28.3"		
B1:	Both hypotheses correct using the correct notation or written out in full		
M1:	For recognising the need to combine groups		
B1:	Number of degrees of freedom = $3 \text{ may be implied by a correct CV}$		
B1:	awrt 7.82		
M1:	Attempting to find $\sum \frac{(O_i - E_i)^2}{E_i}$ or $\sum \frac{O_i^2}{E_i} - N$ may be implied by awrt 8.12		
A1:	awrt 8.12		
A1:	Evaluating the outcome of a model by drawing a correct inference in context		
(b)			
B1:	Explaining why there are 4 classes		
B1:	Explanation of why 2 is subtracted		
(c)			
B1:	Correct hypotheses for the refined model		
B1:	The CV awrt 5.99 and drawing the correct inference for the refined model		

Ques	tion	Scheme	Marks	AOs
Q4	4.	Po(2.3) $n = 100 \ \mu = 2.3 \ \sigma^2 = 2.3$		
		$CIT \Rightarrow \overline{Y} \approx N(23^{-2.3})$	M1	3.1a
		$CL1 \rightarrow A \approx N\left(2.5, \frac{100}{100}\right)$	A1	1.1b
		$P(\bar{X} > 2.5) = P\left(Z > \frac{2.5 - 2.3}{\sqrt{0.023}}\right)$	M1	3.4
		= P(Z > 1.318)		
		= 0.09632	A1	1.1b
			(4)	
			(4 n	narks)
M1:	For re	ealising the need to use the CLT to set $\overline{X} \approx$ normal with correct mean		
	May l	be implied by using the correct normal distribution		
A1:	For fu	illy correct normal stated or used		
M1:	M1: Use of the normal model to find P($\overline{X} > 2.5$). Can be awarded for $\frac{2.5 - 2.3}{\sqrt{0.023}}$			
	or awrt 1.32			
A1:	awrt ().0963		

Question	Scheme	Marks	AOs		
Q5(a)	$\binom{7}{1} \times 0.15^2 \times (0.85)^6$	M1	3.3		
	= 0.05940 = awrt <u>0.0594</u>	A1	1.1b		
		(2)			
(b)	The model is only valid if:				
	the games (trials) are independent	B1	3.5b		
	the probability of winning a prize, 0.15, is constant for each game	B1	3.5b		
		(2)			
(c)	$18 = \frac{r}{10}$ and $6^2 = \frac{r(1-p)}{10}$	M1	3.1b		
	$p p^2$	A1	1.1b		
	Solving: $2p = 1 - p$	M1	1.1b		
	$p = \frac{1}{3}$ (> 0.15) so Mary has the greater chance of winning a prize	A1	3.2a		
		(4)			
		(8 m	arks)		
Notes:	Notes:				
5(a) M1: For selecting an appropriate model negative binomial or B(7, 0.15) with an extra success in 8 th trial e.g. $\binom{7}{1}$ 0.15×(0.85) ⁶ ×0.15 Allow $\binom{7}{1}$ 0.85×(0.15) ⁶ ×0.85 may be implied by awrt 0.0594					
(b)	L U.U <i>J 7</i> +				
B1: Sta	B1: Stating the first assumption that games are independent				
B1: Sta	: Stating the second assumption that the probability remains constant				
(c) M1: For A1: Bot	Forming an equation for the mean or for the standard deviationBoth equations correct				
M1: Sol	Solving the 2 equations leading to $2p = 1 - p$				
A1: For	A1: For $p = \frac{1}{3}$ followed by a correct deduction				

Question	Scheme	Marks	AOs	
Q6(a)	$G_X(1) = 1$ gives		2.1	
	$k \times 6^2 = 1$ so $k = \frac{1}{36}$ *	A1*cso	1.1b	
		(2)		
(b)	$P(X=3) = \text{coefficient of } t^3 \text{ so } G_X(t) = k(+4t^3)$	M1	1.1b	
	$[P(X=3)=]$ $\frac{1}{9}$	A1	1.1b	
		(2)		
(c)	$G'_{X}(t) = 2k(3+t+2t^{2}) \times (1+4t)$	M1	2.1	
	$E(X) = G'_X(1) = 2k(3+1+2) \times (1+4)$	M1	1.1b	
	$=\frac{5}{3}$	A1	1.1b	
	$G_X''(t) = 2k \left[\left(3 + t + 2t^2 \right) \times 4 + \left(1 + 4t \right)^2 \right]$	M1 A1	2.1 1.1b	
	$G''_{x}(1) = 2k[6 \times 4 + 5^{2}] \qquad \left\{ = \frac{49}{18} \right\}$	M1	1.1b	
	$Var(X) = G''_X(1) + G'_X(1) - \left[G'_X(1)\right]^2 = \frac{49}{18} + \frac{5}{3} - \frac{25}{9}$	M1	2.1	
	$=\frac{29}{18}*$	A1*cso	1.1b	
		(8)		
(d)	$G_{2X+1}(t) = \frac{t}{36} \left(3 + t^2 + 2\left(t^2\right)^2 \right)^2 \qquad [\times t \text{ or sub } t^2 \text{ for } t]$	M1	3.1a	
	$= G_{2X+1}(t) = \frac{t}{36} (3 + t^2 + 2t^4)^2$	A1	1.1b	
		(2)		
(14 marks)				
M1: Stating $G_v(1)=1$				
A1*: Fully correct proof with no errors cso				
(b)				
M1: Attempting to find the coefficient of t^3 . May be implied by obtaining $\frac{1}{9}$ or awrt 0.11				
A1: $\frac{1}{9}$, allow awrt 0.111				

Question 6 notes continued:

(c)

- M1: Attempting to find $G_X(t)$. Allow Chain rule or multiplying out the brackets and differentiating
- **M1:** Substituting t = 1 into $G'_X(t)$

A1:
$$\frac{5}{3}$$
, allow awrt 1.67

M1: Attempting to find
$$G''_{X}(t)$$

A1:
$$2k \left[\left(3 + t + 2t^2 \right) \times 4 + \left(1 + 4t \right)^2 \right]$$
 or $k(48t^2 + 24t + 26)$ o.e.

A1:
$$2k[6 \times 4 + 5^2]$$
 0.e.

M1: Using
$$G''_{X}(1) + G'_{X}(1) - [G'_{X}(1)]^{2}$$
 to find the Variance

A1*:
$$\frac{29}{18} \csc \theta$$

- (d)
- **M1:** Realising the need to $\times t$ or sub t^2 for t

A1:
$$\frac{t}{36}(3+t^2+2t^4)^2$$
, or $\frac{t}{36}(9+6t^2+13t^4+4t^6+4t^8)$ o.e.

Question	Scheme	Marks	AOs
Q7(a)	$X \sim B(20, 0.2)$ and seek c such that $P(X \le c) < 0.10$	M1	3.3
	$[P(X \le 1) = 0.0692]$ CR is $X \le 1$	A1	1.1b
		(2)	
(b)	Size = <u>0.0692</u>	B1ft	1.2
		(1)	
(c)	$Y =$ no. of spins until red obtained so $Y \sim \text{Geo}(0.2)$	M1	3.3
	$\mu = \frac{1}{p} \text{ so if } p < 0.2 \text{ then mean is } \underline{\text{larger so seek } d \text{ so that}}$ $P(Y \ge d) < 0.10$	M1	2.4
	$\mathbf{P}(Y \ge d) = (0.8)^{d-1}$	M1	3.4
	$(0.8)^{d-1} < 0.10 \implies d-1 > \frac{\log(0.1)}{\log(0.8)}$	M1	1.1b
	d > 11.3	A1	1.1b
	CR is $Y \ge 12$	A1	2.2b
		(6)	
(d)	Size = $[0.8^{11} = 0.085899] = 0.0859$	B1	1.1b
		(1)	
(e)(i)	Power = P(reject H ₀ when it is false) = P($X \le 1 X \sim B(20, p)$)	M1	2.1
	$= (1-p)^{20} + 20(1-p)^{19} p$	M1	1.1b
	$= (1-p)^{19}(1+19p) *$	A1*cso	1.1b
(ii)	Power = $(1-p)^{11}$	B1	1.1b
		(4)	
(f)	Sam's test has smaller P(Type I error) (or size) so is better	B1	2.2a
	Power of Sam's test = 0.1755	B1	1.1b
	Power of Tessa's test = $0.85^{11} = 0.1673$	B1	1.1b
	So for $p = 0.15$ Sam's test is recommended	B1	2.2b
		(4)	
		(18 r	narks)

Notes	
(a) M1: A1:	Realising the need to use the model Using B(20,0.2) with method for finding the CR or implied by a correct CR $X \leq 1$ or $X \leq 2$
(b) B1:	awrt 0.0692
(c) M1: M1: M1:	Realising that the model Geo(0.2) is needed. This may be written or used Realising the key step that they need to find $P(Y \ge d) < 0.10$ Using the model $(0.8)^{d-1}$
M1: A1: A1:	Using the model $(0.8)^{d-1} < 0.10$ and finding a method to solve leading to a value/range of values for <i>d</i> For $d > 11.3$ For $Y \ge 12$ or $Y > 11$ (a correct inference)
(d) B1ft:	awrt 0.0692. ft their answer to part (c)
(e)(i) M1: M1: A1*:	Using B(20, <i>p</i>) and realizing they need to find P($X \le 1$) o.e. This may be used or written Using P($X = 0$) + P($X = 1$) Fully correct proof (no errors) cso
(ii) B1:	For $(1-p)^{11}$
(f) B1: B1: B1: B1:	Making a deduction about the tests using the answers to part(b) and (d) awrt 0.0176 awrt 0.167 A correct inference about which test is recommended