Paper 3: Further Statistics 1 Mark Schemes

Question	Scheme		Marks	AOs
Q1	$\mathrm{H}_{0}: \lambda=5(\lambda=2.5) \quad \mathrm{H}_{1}: \lambda>5(\lambda>2.5)$		B1	2.5
	$X \sim \operatorname{Po}$ (2.5)		B1	3.3
	Method 1:	Method 2:		
	$\begin{gathered} \mathrm{P}(X \geqslant 7)=1-\mathrm{P}(X \leqslant 6) \\ =1-0.9858 \end{gathered}$	$\begin{gathered} \mathrm{P}(X \geqslant 5)=0.1088 \\ \mathrm{P}(X \geqslant 6)=0.042 \end{gathered}$	M1	1.1b
	$=0.0142$	CR $X \geqslant 6$	A1	1.1b
	$0.0142<0.05 \quad 7 \geqslant 6$ or 7 is in critical region or 7 is significant Reject H_{0}. There is evidence at the 5% significance level that the level of pollution has increased. or There is evidence to support the scientists claim is justified		A1cso	2.2b
			(5 marks)	
Notes:				
B1: Both hypotheses correct using λ or μ and 5 or 2.5 B1: Realising that the model $\operatorname{Po}(2.5)$ is to be used. This may be stated or used M1: Using or writing $1-\mathrm{P}(X \leqslant 6)$ or $1-\mathrm{P}(X<7)$ a correct CR or $\mathrm{P}(X \geqslant 5)=$ awrt 0.109 and $\mathrm{P}(X \geqslant 6)=$ awrt 0.042 A1: awrt 0.0142 or $\mathrm{CR} X \geqslant 6$ or $X>5$ M1: A fully correct solution and drawing a correct inference in context				

Question	Scheme	Marks	AOs
Q2(a)	$\begin{aligned} & \mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0) \\ & 1-\mathrm{P}(X=0)=0.049 \end{aligned}$	B1	3.1b
	$\mathrm{P}(X=0)=0.951$	B1	1.1b
	$\begin{aligned} & x^{5}=0.951 \\ & \quad x=0.99 \end{aligned}$	M1	3.1b
	$p=0.01$	A1	1.1b
	$X \sim \mathrm{~B}(1000,0.01)$	M1	3.3
	Mean $=n p=10$	A1ft	1.1b
	Variance $=n p(1-p)=9.9$	A1ft	1.1b
		(7)	
(b)	$X \sim \operatorname{Po}($ " 10 ") then require: $\mathrm{P}(X>6)=1-\mathrm{P}(X \leqslant 6)$	M1	3.4
	$=1-0.1301$		
	$=0.870$	A1	1.1b
		(2)	
(c)	The approximation is valid as : the number of calls is large	B1	2.4
	The probability of connecting to the wrong agent is small	B1	2.4
		(2)	
(d)	The answer is accurate to 2 decimal place	B1	3.2b
		(1)	
(12 marks)			
Notes:			
(a) B1: \quad Realising that the $\mathrm{P}($ at least 1 call $)=1-\mathrm{P}(X=0)$ B1: Calculating $\mathrm{P}(X=0)=0.951$ M1: Forming the equation $x^{5}=$ " their 0.951 " may be implied by $p=0.01$ A1: 0.01 only M1: Realising the need to use the model $\mathrm{B}(1000,0.01)$ This may be stated or used A1: \quad Mean $=10$ or ft their p but only if $0<p<1$ A1: $\quad \operatorname{Var}=9.9$ or ft their p but only if $0<p<1$			
(b) M1: Using the model Po("their 10 ") (this may be written or used) and $1-\mathrm{P}(X \leqslant 6)$ A1: awrt 0.870 Award M1 A1 for awrt 0.870 with no incorrect working			

Question 2 notes continued

(c)

B1: Explaining why approximation is valid - need the context of number and calls
B1: Need the context connecting, wrong agent
(d)

B1: Evaluating the accuracy of their answer in (b). Allow 2 significant figures

Question		Scheme	Marks	AOs
Q3(a)	Expected value for $2=150 \times \mathrm{P}(X=2)$		M1	3.4
	$=28.3015 \ldots$		A1	1.1b
	$\begin{aligned} \text { Expected value for } 4 \text { or more } & =150-(53.8+56.6+28.3+8.9) \\ & =2.4 \end{aligned}$		Alft	1.1b
	$\mathrm{H}_{0}: \operatorname{Bin}(20,0.05)$ is a suitable model $\mathrm{H}_{1}: \operatorname{Bin}(20,0.05)$ is not a suitable model		B1	2.5
	Combining last two groups		M1	2.1
		$\geqslant 3$		
	Observed frequency	19		
	Expected frequency	11.3		
	$v=4-1=3$		B1	1.1b
	Critical value, $\chi^{2}(0.05)=7.815$		B1	1.1a
	$\text { Test statistic }=\frac{(43-53.8)^{2}}{53.8}+\frac{(62-56.6)^{2}}{56.6}+\ldots$		M1	1.1b
	$=8.117$		A1	1.1 b
	In critical region, sufficient evidence to reject H_{0}, accept H_{1} Significant evidence at 5\% level to reject the manager's model		A1	3.5a
			(10)	
(b)	$v=4-2=2$			
	4 classes due to pooling		B1	2.4
	2 restrictions (equal total and mean/proportion)		B1	2.4
			(2)	
(c)	H_{0} : Binomial distribution is a good model H_{1} : Binomial distribution is not a good model		B1	3.4
	Critical value, $\chi^{2}(0.05)=5.991$ Test statistic is not in critical region, insufficient evidence to reject H_{0} There is evidence that the Binomial distribution is a good model		B1	3.5a
			(2)	
(14 marks)				

Notes:

(a)

M1: Using the binomial model $150 \times p^{2} \times(1-p)^{18}$ may be implied by 28.3
A1: awrt 28.3
A1: awrt 2.4 or ft their " 28.3 "
B1: Both hypotheses correct using the correct notation or written out in full
M1: For recognising the need to combine groups
B1: Number of degrees of freedom $=3$ may be implied by a correct CV
B1: awrt 7.82
M1: Attempting to find $\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ or $\sum \frac{O_{i}{ }^{2}}{E_{i}}-N$ may be implied by awrt 8.12
A1: awrt 8.12
A1: Evaluating the outcome of a model by drawing a correct inference in context
(b)

B1: Explaining why there are 4 classes
B1: Explanation of why 2 is subtracted
(c)

B1: Correct hypotheses for the refined model
B1: The CV awrt 5.99 and drawing the correct inference for the refined model

Questio	Scheme	Marks	AOs
Q4.	$\operatorname{Po}(2.3) \quad n=100 \mu=2.3 \sigma^{2}=2.3$		
	CLT $\Rightarrow \bar{X} \approx \mathrm{~N}\left(2.3, \frac{2.3}{100}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{P}(\bar{X}>2.5)=\mathrm{P}\left(Z>\frac{2.5-2.3}{\sqrt{0.023}}\right)$	M1	3.4
	$=\mathrm{P}(\mathrm{Z}>1.318 .$.		
	$=0.09632 \ldots$	A1	1.1b
		(4)	
(4 marks)			
M1: For realising the need to use the CLT to set $\bar{X} \approx$ normal with correct mean May be implied by using the correct normal distribution A1: For fully correct normal stated or used M1: Use of the normal model to find $\mathrm{P}(\bar{X}>2.5)$. Can be awarded for $\frac{2.5-2.3}{\sqrt{0.023}}$ or awrt 1.32 A1: awrt 0.0963			

Question	Scheme	Marks	AOs
Q5(a)	$\binom{7}{1} \times 0.15^{2} \times(0.85)^{6}$	M1	3.3
	$=0.05940 \ldots=$ awrt $\underline{0.0594}$	A1	1.1 b
		(2)	
(b)	The model is only valid if:		
	the games (trials) are independent	B1	3.5b
	the probability of winning a prize, 0.15 , is constant for each game	B1	3.5b
		(2)	
(c)	$18=\frac{r}{p}$ and $6^{2}=\frac{r(1-p)}{p^{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Solving: $2 p=1-p$	M1	1.1b
	$p=\frac{1}{3}(>0.15)$ so Mary has the greater chance of winning a prize	A1	3.2a
		(4)	
(8 marks)			
Notes:			
5(a) M1: For selecting an appropriate model negative binomial or $\mathrm{B}(7,0.15)$ with an extra success in $8^{\text {th }}$ trial e.g. $\binom{7}{1} 0.15 \times(0.85)^{6} \times 0.15$ Allow $\binom{7}{1} 0.85 \times(0.15)^{6} \times 0.85$ may be implied by awrt 0.0594 A1: awrt 0.0594			
(b) B1: Stating the first assumption that games are independent B1: Stating the second assumption that the probability remains constant			
(c) M1: Forming an equation for the mean or for the standard deviation A1: Both equations correct M1: Solving the 2 equations leading to $2 p=1-p$ A1: \quad For $p=\frac{1}{3}$ followed by a correct deduction			

Question	Scheme	Marks	AOs
Q6(a)	$\mathrm{G}_{X}(1)=1$ gives	M1	2.1
	$k \times 6^{2}=1 \quad$ so $k=\frac{1}{36} \quad *$	A1*cso	1.1b
		(2)	
(b)	$\mathrm{P}(X=3)=$ coefficient of t^{3} so $\mathrm{G}_{X}(t)=k\left(\ldots+4 t^{3} \ldots\right)$	M1	1.1b
	$[\mathrm{P}(X=3)=] \underline{\frac{1}{9}}$	A1	1.1b
		(2)	
(c)	$\mathrm{G}_{X}^{\prime}(t)=2 k\left(3+t+2 t^{2}\right) \times(1+4 t)$	M1	2.1
	$\mathrm{E}(X)=\mathrm{G}_{X}^{\prime}(1)=2 k(3+1+2) \times(1+4)$	M1	1.1b
	$=\frac{5}{3}$	A1	1.1b
	$\mathrm{G}_{X}^{\prime \prime}(t)=2 k\left[\left(3+t+2 t^{2}\right) \times 4+(1+4 t)^{2}\right]$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
	$\mathrm{G}_{x}^{\prime \prime}(1)=2 k\left[6 \times 4+5^{2}\right] \quad\left\{=\frac{49}{18}\right\}$	M1	1.1b
	$\operatorname{Var}(X)=\mathrm{G}_{X}^{\prime \prime}(1)+\mathrm{G}_{X}^{\prime}(1)-\left[\mathrm{G}_{X}^{\prime}(1)\right]^{2}=\frac{49}{18}+\frac{5}{3}-\frac{25}{9}$	M1	2.1
	$=\frac{29}{18}$ *	A1*cso	1.1b
		(8)	
(d)	$\mathrm{G}_{2 X+1}(t)=\frac{t}{36}\left(3+t^{2}+2\left(t^{2}\right)^{2}\right)^{2} \quad\left[\times t\right.$ or sub t^{2} for $\left.t\right]$	M1	3.1a
	$=\mathrm{G}_{2 X+1}(t)=\frac{t}{36}\left(3+t^{2}+2 t^{4}\right)^{2}$	A1	1.1b
		(2)	
(14 marks)			
Notes:			
(a) M1: \quad Stating $\mathrm{G}_{X}(1)=1$ A1*: Fully correct proof with no errors cso			
(b) M1: Atte A1: $\frac{1}{9}$,	pting to find the coefficient of t^{3}. May be implied by obtaining $\frac{1}{9}$ ow awrt 0.111	awrt 0.1	

Question 6 notes continued:

(c)

M1: Attempting to find $\mathrm{G}_{X}(t)$. Allow Chain rule or multiplying out the brackets and differentiating
M1: \quad Substituting $t=1$ into $\mathrm{G}_{X}(t)$
A1: $\frac{5}{3}$, allow awrt 1.67
M1: Attempting to find $\mathrm{G}_{X}^{\prime \prime}(t)$
A1: $\quad 2 k\left[\left(3+t+2 t^{2}\right) \times 4+(1+4 t)^{2}\right]$ or $k\left(48 t^{2}+24 t+26\right)$ o.e.
A1: $\quad 2 k\left[6 \times 4+5^{2}\right]$ o.e.
M1: Using $\mathrm{G}_{X}^{\prime \prime}(1)+\mathrm{G}_{X}^{\prime}(1)-\left[\mathrm{G}_{X}^{\prime}(1)\right]^{2}$ to find the Variance
A1*: $\frac{29}{18}$ cso
(d)

M1: Realising the need to $\times t$ or sub t^{2} for t
A1: $\quad \frac{t}{36}\left(3+t^{2}+2 t^{4}\right)^{2}$, or $\frac{t}{36}\left(9+6 t^{2}+13 t^{4}+4 t^{6}+4 t^{8}\right)$ o.e.

Question	Scheme	Marks	AOs
Q7(a)	$X \sim \mathrm{~B}(20,0.2)$ and seek c such that $\mathrm{P}(X \leqslant c)<0.10$	M1	3.3
	$[\mathrm{P}(X \leqslant 1)=0.0692] \quad \mathrm{CR}$ is $X \leqslant 1$	A1	1.1b
		(2)	
(b)	Size $=\underline{\mathbf{0 . 0 6 9 2}}$	B1ft	1.2
		(1)	
(c)	$Y=$ no. of spins until red obtained so $\quad Y \sim \operatorname{Geo}(0.2)$	M1	3.3
	$\mu=\frac{1}{p}$ so if $p<0.2$ then mean is larger so seek d so that $\mathrm{P}(Y \geqslant d)<0.10$	M1	2.4
	$\mathrm{P}(Y \geqslant d)=(0.8){ }^{d-1}$	M1	3.4
	$(0.8)^{d-1}<0.10 \Rightarrow d-1>\frac{\log (0.1)}{\log (0.8)}$	M1	1.1b
	$d>11.3$.	A1	1.1b
	CR is $\boldsymbol{Y} \geqslant \mathbf{1 2}$	A1	2.2b
		(6)	
(d)	Size $=\left[0.8^{11}=0.085899 \ldots\right]=\underline{\mathbf{0 . 0 8 5 9}}$	B1	1.1b
		(1)	
(e)(i)	Power $=\mathrm{P}\left(\right.$ reject H_{0} when it is false $)=\mathrm{P}(X \leqslant 1 \mid X \sim \mathrm{~B}(20, p))$	M1	2.1
	$=(1-p)^{20}+20(1-p)^{19} p$	M1	1.1b
	$=(1-p)^{19}(1+19 p)$ *	A1*cso	1.1b
(ii)	Power $=(1-p)^{11}$	B1	1.1b
		(4)	
(f)	Sam's test has smaller P(Type I error) (or size) so is better	B1	2.2a
	Power of Sam's test $=0.1755 \ldots$	B1	1.1b
	Power of Tessa's test $=0.85^{11}=0.1673 \ldots$	B1	1.1b
	So for $p=0.15$ Sam's test is recommended	B1	2.2b
		(4)	
(18 marks)			

Notes:

(a)

M1: Realising the need to use the model Using $B(20,0.2)$ with method for finding the $C R$ or implied by a correct CR
A1: $\quad X \leqslant 1$ or $X<2$
(b)

B1: awrt 0.0692
(c)

M1: Realising that the model Geo(0.2)is needed. This may be written or used
M1: Realising the key step that they need to find $\mathrm{P}(Y \geqslant d)<0.10$
M1: Using the model $(0.8)^{d-1}$
M1: Using the model $(0.8)^{d-1}<0.10$ and finding a method to solve leading to a value/range of values for d
A1: \quad For $d>11.3$..
A1: For $Y \geqslant 12$ or $Y>11$ (a correct inference)
(d)

B1ft: awrt 0.0692. ft their answer to part (c)
(e)(i)

M1: Using $\mathrm{B}(20, p)$ and realizing they need to find $\mathrm{P}(X \leqslant 1)$ o.e. This may be used or written
M1: Using $\mathrm{P}(X=0)+\mathrm{P}(X=1)$
A1*: Fully correct proof (no errors) cso
(ii)

B1: \quad For $(1-p)^{11}$
(f)

B1: Making a deduction about the tests using the answers to part(b) and (d)
B1: awrt 0.0176
B1: awrt 0.167
B1: A correct inference about which test is recommended

