Paper 3A: Further Pure Mathematics 1 Mark Scheme

Question	Scheme								Marks	AOs
1	Step 0.5								B1	1.1b
		y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	M1	1.1 b
	x	1	1.5	2	2.5	3	3.5	4		
	y	$\sqrt{2}$	$\sqrt{4.375}$	3	$\sqrt{16.625}$	$\sqrt{28}$	$\sqrt{43.875}$	$\sqrt{65}$		
$y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}=177.23 "$									M1	1.1b
	$\int_{1}^{4} \sqrt{1+x^{3}} \mathrm{~d} x \approx \frac{0.5}{3} \times 177.23 "$								M1	1.1b
	$=12.9$								A1	1.1b
									(5)	
(5 marks)										
Notes:										
$\begin{array}{lc}\text { B1: } & \text { Use } \\ \text { M1: } & \text { Atte } \\ \text { M1: } & \text { Use } \\ \text { A1: } & \frac{0.5}{3} \\ \text { A1: } & \text { awrt }\end{array}$	step	nd	0.5 alues w $y_{0}+4 y_{1}$	at	t 2 corr	$y_{5}+$	with cor	ct co		

Question	Scheme	Marks	AOs
2	$y=x^{3} \mathrm{e}^{k x}$ so $u=x^{3} \quad$ and $\frac{\mathrm{d} u}{\mathrm{~d} x}=3 x^{2}$ and $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}=6 x$ and $\frac{\mathrm{d}^{3} u}{\mathrm{~d} x^{3}}=6 \quad\left(\right.$ and $\left.\frac{\mathrm{d}^{4} u}{\mathrm{~d} x^{4}}=0\right)$	M1	1.1b
	$\begin{aligned} & v=\mathrm{e}^{k x} \text { and } \frac{\mathrm{d}^{n} v}{\mathrm{~d} x^{n}}=k^{n} \mathrm{e}^{k x} \text { and } \frac{\mathrm{d}^{n-1} v}{\mathrm{~d} x^{n-1}}=k^{n-1} \mathrm{e}^{k x} \text { and } \frac{\mathrm{d}^{n-2} v}{\mathrm{~d} x^{n-2}}=k^{n-2} \mathrm{e}^{k x} \\ & \text { (and...) } \end{aligned}$	M1	2.1
	$\begin{gathered} \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=x^{3} k^{n} \mathrm{e}^{k x}+n 3 x^{2} k^{n-1} \mathrm{e}^{k x}+\frac{n(n-1)}{2} 6 x k^{n-2} \mathrm{e}^{k x}+\frac{n(n-1)(n-2)}{3!} 6 k^{n-3} \mathrm{e}^{k x} \\ \text { and remaining terms disappear } \end{gathered}$	M1	2.1
	So $\quad \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=k^{n-3} \mathrm{e}^{k x}\left(k^{3} x^{3}+3 n k^{2} x^{2}+3 n(n-1) k x+n(n-1)(n-2)\right) *$	A1*	1.1b
		(4)	
(4 marks)			
Notes:			
M1: Differentiate $u=x^{3}$ three times M1: Use $u=\mathrm{e}^{k x}$ and establish the form of the derivatives, with at least the three shown M1: Uses correct formula, with 2 and 3! (or 6) and with terms shown to disappear after the fourth term A1*: Correct solution leading to the given answer stated. No errors seen			

Question	Scheme	Marks	AOs
3(a)	Use of $x=t v$ to give $\frac{\mathrm{d} x}{\mathrm{~d} t}=v+t \frac{\mathrm{~d} v}{\mathrm{~d} t}$	M1	1.1b
	$\frac{\mathrm{d}^{2} x}{} \mathrm{~d}^{2} v+\frac{\mathrm{d} v}{\mathrm{~d}}+\mathrm{d}^{2} v$	M1	2.1
	$\frac{\mathrm{d} t^{2}}{}=\frac{\mathrm{d}}{\mathrm{d} t}+\frac{\mathrm{d}}{\mathrm{d} t}+t \frac{\mathrm{~d}}{\mathrm{~d} t^{2}}$	A1	1.1b
	Uses $t^{2}\left(\right.$ their $2^{\text {nd }}$ derivative $)-2 t\left(\right.$ their $1^{\text {st }}$ derivative $)+\left(2+t^{2}\right) x=t^{4}$ and simplifies LHS	M1	2.1
	$\left(t^{3} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} t^{2}}+t^{3} v=t^{4}\right.$ leading to $) \frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}+v=t^{*}$	A1*	1.1b
		(5)	
(b)	Solve $\lambda^{2}+1=0$ to give $\lambda^{2}=-1$	M1	1.1b
	$v=A \cos t+B \sin t$	A1ft	1.1b
	Particular Integral is $v=k t+l$	B1	2.2a
	$\frac{\mathrm{d} v}{\mathrm{~d} t}=k$ and $\frac{\mathrm{d}^{2} v}{\mathrm{~d} t^{2}}=0$ and solve $0+k t+l=t$ to give $k=1, l=0$	M1	1.1b
	Solution: $v=A \cos t+B \sin t+t$	A1	1.1b
	Displacement of C from O is given by $x=t v=\ldots$	M1	3.4
	$x=t(A \cos t+B \sin t+t)$	A1	2.2a
		(7)	
(c)(i)	For large t, the displacement gets very large (and positive)	B1	3.2a
(ii)	Model suggests midpoint of spring moving relative to fixed point has large displacement when t is large, which is unrealistic. The spring may reach elastic limit / will break	B1	3.5a
		(2)	

(14 marks)

Notes:

(a)

M1: Uses product rule to obtain first derivative
M1: Continues to differentiate again, with product rule and chain rule as appropriate, in order to establish the second derivative
A1: Correct second derivative. Accept equivalent expressions
M1: Shows clearly the substitution into the given equation in order to form the new equation and gathers like terms
A1*: Fully correct solution leading to the given answer
Accept variations on symbols for constants throughout
(b)

M1: Form and solve a quadratic Auxiliary Equation
A1ft: Correct form of the Complementary Function for their solutions to the AE
B1: Deduces the correct form for the Particular Integral (note $v=m t^{2}+k t+l$ is fine)
M1: Differentiates their Particular Integral and substitutes their derivatives into the equation to find the constants ($m=0$ if used)
A1: Correct general solution for equation (II)
M1: Links the solution to equation (II) to the solution of the model equation correctly to find the displacement equation
A1: Deduces the correct general solution for the displacement
(c)(i)

B1: States that for large t the displacement is large o.e. Accept e.g. as $t \rightarrow \infty, x \rightarrow \infty$
(c)(ii)

B1: Reflect on the context of the original problem. Accept 'model unrealistic' / 'spring will break

Question	Scheme	Marks	AOs
4(a)	$y^{\prime \prime}=2 x y^{\prime}-y \Rightarrow y^{\prime \prime \prime}=2 x y^{\prime \prime}+2 y^{\prime}-y^{\prime}$	M1	1.1b
		A1	1.1b
	$y^{\prime \prime \prime}=2 x y^{\prime \prime}+y^{\prime} \Rightarrow y^{\prime \prime \prime}=2 x y{ }^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime \prime}$	M1	2.1
	$y^{\prime \prime \prime}=2 x y$ "' $+3 y^{\prime \prime} \Rightarrow y^{\prime \prime \prime \prime}=2 x y^{\prime \prime \prime}+5 y^{\prime \prime \prime}$	A1	2.1
		(4)	
(b)	$x=0, y=0, y^{\prime}=1 \Rightarrow y^{\prime \prime}(0)=0 \pi \quad$ from equation	B1	2.2a
	$\begin{aligned} & y "(0)=2 \times 0 \times y "(0)+1=1 ; \quad y " "(0)=2 \times 0 \times 1+3 \times 0=0 ; \\ & x=0, y "(0)=1, y^{\prime \prime \prime \prime}(0)=0 \Rightarrow y^{\prime \prime \prime \prime}(0)=5 \end{aligned}$	M1	1.1 b
		A1	1.1b
	$y=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2} x^{2}+\frac{y^{\prime \prime \prime}(0)}{6} x^{3}+\frac{y^{\prime \prime \prime}(0)}{24} x^{4}+\frac{y^{" \prime \prime \prime}(0)}{120} x^{5}+\ldots$	M1	2.5
	Series solution: $y=x+\frac{1}{6} x^{3}+\frac{1}{24} x^{5}+\ldots$	A1ft	1.1b
		(5)	
(9 marks)			

Notes:

(a)

M1: Attempts to differentiate equation with use of the product rule
A1: cao. Accept if terms all on one side
M1: Continues the process of differentiating to progress towards the goal. Terms may be kept on one side, but an expression in the fourth derivative should be obtained
A1: Completes the process to reach the fifth derivative and rearranges to the correct form to obtain the correct answer by correct solution only
(b)

B1: Deduces the correct value for $y^{\prime \prime}(0)$ from the information in the question
M1: Finds the values of the derivatives at the given point
A1: All correct
M1: Correct mathematical language required with given denominators. Can be in factorial form
A1ft: Correct series, must start $y=\ldots$. Follow through the values of their derivatives at 0

Question	Scheme	Marks	AOs
$\begin{gathered} 5 \\ \text { ALT } 2 \end{gathered}$	First three marks as above and then as follows	M1	2.1
		A1	1.1b
		M1	1.1b
	Solves $y^{2}=4 a x$ and their normal simultaneously to find, in terms of a and p, either $x_{Q}\left(=a p^{2}+4 a+\frac{4 a}{p^{2}}\right)$ or $y_{Q}\left(=-2 a p-\frac{4 a}{p}\right)$	M1	3.1a
	Forms a relationship between p and q from their first coordinate: either $y_{Q}=2 a\left(-p-\frac{2}{p}\right) \Rightarrow q=-p-\frac{2}{p}$ or $x_{Q}=a\left(p+\frac{2}{p}\right)^{2} \Rightarrow q= \pm\left(p+\frac{2}{p}\right)$	M1	2.1
	$q=-p-\frac{2}{p}$ (if x coordinate used the correct root must be clearly identified before this mark is awarded)	A1	1.1b
	$\operatorname{Grad} O P \times \operatorname{Grad} O Q=-1 \Rightarrow \frac{2 a p}{a p^{2}} \times \frac{2 a q}{a q^{2}}=-1\left(\Rightarrow q=-\frac{4}{p}\right)$	M1	2.1
	Sets $q=-p-\frac{2}{p}=-\frac{4}{p}$ and solves to give $p^{2}=\ldots$	M1	1.1b
	Hence (as $q=p+\frac{2}{p}=-\frac{4}{p}$ gives no solution $), p^{2}=2$ (only)*	A1*	1.1b
		(9)	

Notes:

(a)

M1: Begins proof by differentiating and using the perpendicularity condition at point P in order to find the equation of the normal
A1: Correct gradient of normal, $-p$ only
M1: Use of $y-y_{1}=m\left(x-x_{1}\right)$. Accept use of $y=m x+c$ and then substitute to find c
M1: Substitute coordinates of Q into their equation to find an equation relating p and q
M1: Use of $m_{1} m_{2}=-1$ with $O P$ and $O Q$ to form a second equation relating p and q
A1: $\quad q=\frac{-4}{p}$ only
M1: Solves the simultaneous equations and cancels a from their results to obtain a quadratic equation in p^{2} only
M1: Attempts to solve their quadratic in p^{2}. Usual rules
A1*: Correct solution leading to given answer stated. No errors seen

Question 5 notes continued:

Alternative 1:

M1A1M1: As main scheme
M1: \quad Solves $y^{2}=4 a x$ and their normal simultaneously to find one of the coordinates for Q in terms of a and p as shown
M1: \quad Finds the second coordinate of Q in terms of a and p
A1: \quad Both coordinates correct in terms of a and p
M1: Use of $m_{1} m_{2}=-1$ with $O P$ and $O Q$. i.e. $\frac{2 a p}{a p^{2}} \times \frac{\text { their } y_{Q}}{\text { their } x_{Q}}=-1$ with coordinates of P and their expressions for x_{Q} and y_{Q}

M1: Cancels the a 's, simplifies to a quadratic in p^{2} and solves the quadratic. Usual rules
A1*: \quad Correct solution leading to the given answer stated. No errors seen

Alternative 2:

M1A1M1: As main scheme
M1: \quad Solves $y^{2}=4 a x$ and their normal simultaneously to find one of the coordinates for Q in terms of a and p as shown
M1: Uses their coordinate to form a relationship between p and q. Allow $q=\left(p+\frac{2}{p}\right)$ for this mark
A1: For $q=-p-\frac{2}{p}$. If the x coordinate was used to find q then consideration of the negative root is needed for this mark. Allow for $q= \pm\left(p+\frac{2}{p}\right)$
M1: Use of $m_{1} m_{2}=-1$ with $O P$ and $O Q$ to form a second equation relating p and q only
M1: \quad Equates expressions for q and attempts to solve to give $p^{2}=\ldots$.
A1*: Correct solution leading to the given answer stated. No errors seen. If x coordinate used, invalid solution must be rejected

Question 6 notes:

(a)

M1: Attempting a suitable cross product. Accept use of unit vectors
M1: Complete method that would lead to finding the Cartesian equation of plane
A1: Accept any equivalent form
(b)

M1: Identifies suitable vectors and attempts to substitute into a correct formula. Accept use of unit vectors
M1: Correct form of scalar triple product using their \mathbf{n} from part (a)
A1: $\frac{8}{3}$ or exact equivalent form
(c)

M1: Uses that E is on $A C$ in order to find an expression for E
M1: Uses that E is in the plane Π to form and solve an expression in k
A1: $\frac{1}{5}$ o.e. only
(d)

M1: Uses formula for volume of tetrahedron and substitutes for AE and AF
$\mathbf{A 1}$: Deduces result: Use of $\frac{1}{6}(\mathbf{A B} \times \mathbf{A C}) . \mathbf{A D}$ is required and no errors seen in solution

Question	Scheme	Marks	AOs
8(a)	$\mathrm{h}(x)=45+15 \sin x+21 \sin \left(\frac{x}{2}\right)+25 \cos \left(\frac{x}{2}\right)$		
	$\frac{\mathrm{dh}}{\mathrm{d} x}=15 \cos x+\frac{21}{2} \cos \left(\frac{x}{2}\right)-\frac{25}{2} \sin \left(\frac{x}{2}\right)$	M1	1.1b
	$\frac{\mathrm{dh}}{\mathrm{d} x}=. . .+. . \frac{1-t^{2}}{1+t^{2}}-. . \frac{2 t}{1+t^{2}}$	M1	1.1a
	e.g. $\frac{\mathrm{d} h}{\mathrm{~d} x}=. .\left(2\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}-1\right)+\ldots \quad$ or $\quad \frac{\mathrm{d} h}{\mathrm{~d} x}=. . \frac{1-\left(\frac{2 t}{1-t^{2}}\right)^{2}}{1+\left(\frac{2 t}{1-t^{2}}\right)^{2}}+\ldots$	M1	3.1a
	e.g. $\frac{\mathrm{d} h}{\mathrm{~d} x}=15\left(2\left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}-1\right)+\frac{21}{2}\left(\frac{1-t^{2}}{1+t^{2}}\right)-\frac{25}{2}\left(\frac{2 t}{1+t^{2}}\right)$	A1	1.1b
	$\ldots=\frac{15\left[4\left(1-t^{2}\right)^{2}-2\left(1+t^{2}\right)^{2}\right]+21\left(1-t^{2}\right)\left(1+t^{2}\right)-50 t\left(1+t^{2}\right)}{2\left(1+t^{2}\right)^{2}} \mathrm{x}$	M1	2.1
	$\ldots=\frac{9 t^{4}-50 t^{3}-180 t^{2}-50 t+51}{2\left(1+t^{2}\right)^{2}}=\frac{\left(t^{2}-6 t-17\right)\left(9 t^{2}+4 t-3\right)}{2\left(1+t^{2}\right)^{2}} *$	A1*	2.1
		(6)	
$\begin{gathered} \text { (a) } \\ \text { ALT } 1 \end{gathered}$	$\mathrm{h}(x)=\ldots+21\left(\frac{2 t}{1+t^{2}}\right)+25\left(\frac{1-t^{2}}{1+t^{2}}\right)$	M1	1.1a
	$=\ldots+15\left[2\left(\frac{2 t}{1+t^{2}}\right)\left(\frac{1-t^{2}}{1+t^{2}}\right)\right]+\ldots \quad$ or $=\ldots+15\left(\frac{2\left(\frac{2 t}{1-t^{2}}\right)}{1+\left(\frac{2 t}{1-t^{2}}\right)^{2}}\right)+\ldots$	M1	2.1
	$\mathrm{h}(x)=45+\frac{15\left(4 t\left(1-t^{2}\right)\right)+42 t\left(1+t^{2}\right)+25\left(1-t^{4}\right)}{\left(1+t^{2}\right)^{2}}$	M1	1.1b
	$\mathrm{h}(x)=45-\frac{25 t^{4}+18 t^{3}-102 t-25}{\left(1+t^{2}\right)^{2}} \text { or } \frac{20 t^{4}-18 t^{3}+90 t^{2}+102 t+70}{\left(1+t^{2}\right)^{2}}$	A1	1.1b
	$\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{\mathrm{d} h}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{\left(u^{\prime}\right)\left(1+t^{2}\right)^{2}-\left(\left(^{\prime} u^{\prime}\right)\left(4 t\left(1+t^{2}\right)\right)\right.}{\left(1+t^{2}\right)^{4}} \times \frac{1}{4}\left(1+t^{2}\right)$	M1	3.1a
	$\ldots=\frac{9 t^{4}-50 t^{3}-180 t^{2}-50 t+51}{2\left(1+t^{2}\right)^{2}}=\frac{\left(t^{2}-6 t-17\right)\left(9 t^{2}+4 t-3\right)}{2\left(1+t^{2}\right)^{2}} *$	A1*	2.1
		(6)	
(b)(i)	Accept any value between $\frac{1}{40}=0.025$ and $\frac{1}{60} \approx 0.167$ inclusive	B1	3.3

Notes Continued:

Alternative:
(a)

M1: Applies t-substitution to both $\left(\frac{x}{2}\right)$ terms
M1: Forms a correct expression in t for the $\sin x$ term, using double angle formula and t substitution, or double ' t '-substitution
M1: Gets all terms in t over the correct common factor. Numerators must be appropriate for their terms. May include the constant term too
A1: Fully correct expression in t for $\mathrm{h}(x)$
M1: Differentiates, using both chain rule and quotient rule with their ' u '
A1*: Achieves the correct answer via expression with correct quartic numerator before factorisation

Note: The individual terms may be differentiated before putting over a common denominator. In this case score the third M for differentiating with chain rule and quotient rule, then r return to the original scheme
(b)(i)

B1: Any value between $\frac{1}{40}$ (e.g. taking $h(0)$ as reference point) or $\frac{1}{60}$ (taking lower peaks as reference)
NB: Taking high peak as reference gives $\frac{1}{50}$
(b)(ii)

B1: Should mention both the bimodal nature and periodicity for the actual data match the graph of h
B1: Mentions that the heights of peaks vary in each oscillation
(c)

M1: Solves (at least) one of the quadratic equations in the numerator
M1: Must be attempting to solve the quadratic factor from which the solution comes $9 t^{2}+4 t-3$ and using $t=\tan \left(\frac{x}{4}\right)$ to find a corresponding value for x
A1: \quad At least one correct x value from solving the requisite quadratic: awrt any of -2.797 , $1.510,9.770,14.076,22.336,26.642,34.902$ or 39.208
M1: Uses graph of h to pick out their $x=26.642$ as the time corresponding to the third of the higher peaks, which is the highest of the peaks on 4th January on the tide height graph. As per scheme or allow if all times listed and correct one picked
M1: Finds the time for one of the values of t corresponding to the highest peaks. E.g. 1.5096...~ 09:31 (3rd January) or 14.076... ~ 22:05 (3rd January) or 26.642 ... 10:39 (4th January) or 39.208 ... 23:13 (4th January). (Only follow through on use of the smallest positive t solution $+4 k \pi$)
A1: Time of greatest tide height on 4th January is approximately 10:39. Also allow 10:38 or 10:40

