Quest	ion	Scheme	Marks	AOs
1(i	$\alpha + \alpha + \alpha$	$\beta + \gamma = 8$, $\alpha\beta + \beta\gamma + \gamma\alpha = 28$, $\alpha\beta\gamma = 32$	B1	3.1a
	$\frac{1}{\alpha}$ +	$\frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma}$	M1	1.1b
		$=\frac{7}{8}$	A1ft	1.1b
		·	(3)	
(ii)	(α+	$-2)(\beta+2)(\gamma+2) = (\alpha\beta+2\alpha+2\beta+4)(\gamma+2)$	M1	1.1b
	$=\alpha_{j}$	$\beta\gamma + 2(\alpha\beta + \alpha\gamma + \beta\gamma) + 4(\alpha + \beta + \gamma) + 8$	A1	1.1b
		= 32 + 2(28) + 4(8) + 8 = 128	A1	1.1b
			(3)	
		Alternative:		
	(<i>x</i> -	$(-2)^{3} - 8(x-2)^{2} + 28(x-2) - 32 = 0$	M1	1.1b
	=	$-8 + \dots - 32 + \dots - 56 - 32 = -128$	A1	1.1b
		$\therefore (\alpha+2)(\beta+2)(\gamma+2) = 128$	A1	1.1b
			(3)	
(iii) α^2	$+\beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	3.1a
		$=8^2-2(28)=8$	Alft	1.1b
			(2)	
			(8 n	narks)
Notes	:			
(i)	- 1			
BI:	Identifies the correct values for all 3 expressions (can score anywhere)			
M1:	Uses a con	rrect identity		
Alft:	Correct va	alue (follow through their 8, 28 and 32)		
(ii)				
M1:	Attempts	to expand		
A1:	Correct expansion			
A1:	Correct value			
Alterr	ative:			
M1:	Substitute	s $x - 2$ for x in the given cubic		
A1:	Calculates the correct constant term			
A1:	Changes sign and so obtains the correct value			
(iii)				
M1:	Establishe	es the correct identity		
A1ft:	Correct va	alue (follow through their 8, 28 and 32)		

Paper 2: Core Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
2(a)	$ \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \\ 12 \end{pmatrix} = 18 - 8 + 24 $	M1	3.1a
	$d = \frac{18 - 8 + 24 - 5}{\sqrt{3^2 + 4^2 + 2^2}}$	M1	1.1b
	$=\sqrt{29}$	A1	1.1b
		(3)	
(b)	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = \dots \text{ and } \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = \dots$	M1	2.1
	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = 0 \text{ and } \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = 0$	A1	2.2a
	\therefore $-\mathbf{i}-3\mathbf{j}+\mathbf{k}$ is perpendicular to Π_2		
		(2)	
(c)	$ \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = -3 + 12 + 2 $	M1	1.1b
	$\sqrt{(-1)^{2} + (-3)^{2} + 1^{2}} \sqrt{(3)^{2} + (-4)^{2} + 2^{2}} \cos \theta = 11$ $\Rightarrow \cos \theta = \frac{11}{\sqrt{(-1)^{2} + (-3)^{2} + 1^{2}} \sqrt{(3)^{2} + (-4)^{2} + 2^{2}}}$	M1	2.1
	So angle between planes $\theta = 52^{\circ} *$	A1*	2.4
		(3)	
		(8	marks)

Notes	:
(a)	
M1:	Realises the need to and so attempts the scalar product between the normal and the
	position vector
M1:	Correct method for the perpendicular distance
A1:	Correct distance
(b)	
M1:	Recognises the need to calculate the scalar product between the given vector and both
	direction vectors
A1:	Obtains zero both times and makes a conclusion
(c)	
M1:	Calculates the scalar product between the two normal vectors
M1:	Applies the scalar product formula with their 11 to find a value for $\cos \theta$
A1*:	Identifies the correct angle by linking the angle between the normal and the angle between
	the planes

Question	Scheme	Marks	AOs
3(i)(a)	$ \mathbf{M} = 2(1+2) - a(-1-1) + 4(2-1) = 0 \Rightarrow a =$	M1	2.3
	The matrix M has an inverse when $a \neq -5$	A1	1.1b
		(2)	
(b)	Minors: $\begin{pmatrix} 3 & -2 & 1 \\ -a-8 & 2 & a+4 \\ 4-a & -6 & -2-a \end{pmatrix}$ or Cofactors: $\begin{pmatrix} 3 & 2 & 1 \\ a+8 & 2 & -a-4 \\ 4-a & 6 & -2-a \end{pmatrix}$	Bl	1.1b
	$\mathbf{M}^{-1} = \frac{1}{ \mathbf{M} } \operatorname{adj}(\mathbf{M})$	M1	1.1b
	$\mathbf{M}^{-1} = \frac{1}{2} \begin{bmatrix} 3 & a+8 & 4-a \\ 2 & 2 & 6 \end{bmatrix} = \frac{2 \text{ correct rows or columns. Follow through their det} \mathbf{M}$	A1ft	1.1b
	$2a+10\begin{pmatrix} 1 & -a-4 & -2-a \end{pmatrix}$ All correct. Follow through their det M	A1ft	1.1b
		(4)	
(ii)	When $n = 1$, lhs = $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$, rhs = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$	M1	2.4
	$ \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} $	M1	2.1
	$= \begin{pmatrix} 3 \times 3^k & 0\\ 3 \times 3(3^k - 1) + 6 & 1 \end{pmatrix}$	A1	1.1b
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3^{k+1}-1) & 1 \end{pmatrix}$	A1	1.1b
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n	A1	2.4
		(6)	
		(12 n	1arks)

Notes	:
(i)(a)	
M1:	Attempts determinant, equates to zero and attempts to solve for <i>a</i> in order to establish the
	restriction for a
A1:	Provides the correct condition for <i>a</i> if M has an inverse
(i)(b)	
B1:	A correct matrix of minors or cofactors
M1:	For a complete method for the inverse
A1ft:	Two correct rows following through their determinant
A1ft:	Fully correct inverse following through their determinant
(ii)	
B1:	Shows the statement is true for $n = 1$
M1:	Assumes the statement is true for $n = k$
M1:	Attempts to multiply the correct matrices
A1:	Correct matrix in terms of k
A1:	Correct matrix in terms of $k + 1$
A1:	Correct complete conclusion

Quest	tion	Scheme	Marks	AOs
4(a)	$z^n + z^{-n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$	M1	2.1
		$=2\cos n\theta^*$	A1*	1.1b
			(2)	
(b))	$\left(z+z^{-1}\right)^4=16\cos^4\theta$	B1	2.1
		$\left(z+z^{-1}\right)^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}$	M1	2.1
		$= z^{4} + z^{-4} + 4(z^{2} + z^{-2}) + 6$	A1	1.1b
		$= 2\cos 4\theta + 4(2\cos 2\theta) + 6$	M1	2.1
		$\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3)^*$	A1*	1.1b
			(5)	
			(7 n	narks)
Notes	:			
(a) M1: A1*:	Iden Achi	tifies the correct form for z^n and z^{-n} and adds to progress to the printe ieves printed answer with no errors	ed answer	
(b) B1•	Regi	ns the argument by using the correct index with the result from part	(a)	
ы. M1.	Degi Real	is a subscription of $(z + z^{-1})^4$	(u)	
	Realises the need to find the expansion of $(z+z^{-1})$			
A1: M1: A1*:	Terms correctly combined Links the expansion with the result in part (a) Achieves printed answer with no errors			

Ques	tion	Scheme	Marks	AOs
5(a	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sin \theta$	$x \cosh x + \cos x \sinh x$	M1	1.1a
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	$\dot{f} = \cos x \cosh x + \sin x \sinh x + \cos x \cosh x - \sin x \sinh x$ $(= 2\cos x \cosh x)$	M1	1.1b
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 2$	$\cos x \sinh x - 2 \sin x \cosh x$	M1	1.1b
	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = -$	$4\sinh x \sin x = -4y^*$	A1*	2.1
			(4)	
(b	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0$	$= 2, \ \left(\frac{d^{6}y}{dx^{6}}\right)_{0} = -8, \ \left(\frac{d^{10}y}{dx^{10}}\right)_{0} = 32$	B1	3.1a
	Uses y	$= y_0 + xy'_0 + \frac{x^2}{2!}y''_0 + \frac{x^3}{3!}y'''_0 + \dots$ with their values	M1	1.1b
		$=\frac{x^2}{2!}(2)+\frac{x^6}{6!}(-8)+\frac{x^{10}}{10!}(32)$	A1	1.1b
		$=x^2 - \frac{x^6}{90} + \frac{x^{10}}{113400}$	A1	1.1b
			(4)	
(c)	$2(-4)^{n-2}$	$\frac{x^{4n-2}}{(4n-2)!}$	M1 A1	3.1a 2.2a
			(2)	
			(10	marks)
Notes	:			
(a)				
M1:	Realises the n	eed to use the product rule and attempts first derivative		
M1:	Realises the n derivative	eed to use a second application of the product rule and attem	pts the sec	cond
M1:	Correct metho	od for the third derivative		
A1*:	Obtains the co	prrect 4^{th} derivative and links this back to y		
(b)				
B1:	Makes the con	nnection with part (a) to establish the general pattern of deriv	vatives and	l
	finds the corre	ect non-zero values		
M1:	Correct attemp	pt at Maclaurin series with their values		
A1:	Correct expres	ssion un-simplified		
Al:	Correct expre	ssion and simplified		
(c)	a			
M1:	Generalising,	dealing with signs, powers and factorials		
A1:	Correct expre	ssion		

Question	Scheme	Marks	AOs
6(a)(i)		M1	1.1b
	Re	A1	1.1b
(a)(ii)	$ z-4-3i = 5 \Longrightarrow x+iy-4-3i = 5 \Longrightarrow (x-4)^2 + (y-3)^2 = \dots$	M1	2.1
	$(x-4)^{2} + (y-3)^{2} = 25$ or any correct form	A1	1.1b
	$(r\cos\theta - 4)^{2} + (r\sin\theta - 3)^{2} = 25$ $\Rightarrow r^{2}\cos^{2}\theta - 8r\cos\theta + 16 + r^{2}\sin^{2}\theta - 6r\sin\theta + 9 = 25$ $\Rightarrow r^{2} - 8r\cos\theta - 6r\sin\theta = 0$	M1	2.1
	$\therefore r = 8\cos\theta + 6\sin\theta *$	A1*	2.2a
		(6)	
(b)(i)	Im	B1	1.1b
	Re	B1ft	1.1b
(b)(ii)	$A = \frac{1}{2} \int r^2 d\theta = \frac{1}{2} \int (8\cos\theta + 6\sin\theta)^2 d\theta$ $= \frac{1}{2} \int (64\cos^2\theta + 96\sin\theta\cos\theta + 36\sin^2\theta) d\theta$	M1	3.1a
	$=\frac{1}{2}\int \left(32(\cos 2\theta+1)+96\sin \theta\cos \theta+18(1-\cos 2\theta)\right)d\theta$	M1	1.1b
	$=\frac{1}{2}\int (14\cos 2\theta + 50 + 48\sin 2\theta)d\theta$	A1	1.1b
	$=\frac{1}{2}\left[7\sin 2\theta + 50\theta - 24\cos 2\theta\right]_{0}^{\frac{\pi}{3}} = \frac{1}{2}\left\{\left(\frac{7\sqrt{3}}{2} + \frac{50\pi}{3} + 12\right) - \left(-24\right)\right\}$	M1	2.1
	$=\frac{7\sqrt{3}}{4}+\frac{25\pi}{3}+18$	A1	1.1b
		(7)	

Question	Scheme	Marks	AOs
	<u>Alternative:</u> Candidates may take a geometric approach e.g. by finding sector + 2 triangles		
	Angle $ACB = \left(\frac{2\pi}{3}\right)$ so area sector $ACB = \frac{1}{2}(5)^2 \frac{2\pi}{3}$ Area of triangle $OCB = \frac{1}{2} \times 8 \times 3$	M1	3.1a
	Sector area ACB + triangle area $OCB = \frac{25\pi}{3} + 12$	A1	1.1b
	Area of triangle <i>OAC</i> : Angle <i>ACO</i> = $2\pi - \frac{2\pi}{3} - \cos^{-1}\left(\frac{5^2 + 5^2 - 8^2}{2 \times 5 \times 5}\right)$ so area <i>OAC</i> = $\frac{1}{2}(5)^2 \sin\left(\frac{4\pi}{3} - \cos^{-1}\left(\frac{-7}{25}\right)\right)$	M1	1.1b
	$= \frac{25}{2} \left(\sin \frac{4\pi}{3} \cos \left(\cos^{-1} \left(\frac{-7}{25} \right) \right) - \cos \frac{4\pi}{3} \sin \left(\cos^{-1} \left(\frac{-7}{25} \right) \right) \right)$ $= \frac{25}{2} \left(\left(\frac{7\sqrt{3}}{50} \right) + \frac{1}{2} \sqrt{1 - \left(\frac{7}{25} \right)^2} \right) = \frac{7\sqrt{3}}{4} + 6$ $Total area = \frac{25\pi}{2} + \frac{1}{2} \times 8 \times 3 + 6 + \frac{7\sqrt{3}}{2}$	M1	2.1
	$= \frac{7\sqrt{3}}{4} + \frac{25\pi}{3} + 18$	A1	1.1b
		(13 n	harks)

Notes	Notes:		
(a)(i)			
M1:	Draws a circle which passes through the origin		
A1:	Fully correct diagram		
(a)(ii)			
M1:	Uses $z = x + iy$ in the given equation and uses modulus to find equation in x and y only		
A1:	Correct equation in terms of x and y in any form – may be in terms of r and θ		
M1:	Introduces polar form, expands and uses $\cos^2 \theta + \sin^2 \theta = 1$ leading to a polar equation		
A1*:	Deduces the given equation (ignore any reference to $r = 0$ which gives a point on the curve)		
(b)(i)			
B1:	Correct pair of rays added to their diagram		
B1ft:	Area between their pair of rays and inside their circle from (a) shaded, as long as there is an		
	intersection		
(b)(ii)			
M1:	Selects an appropriate method by linking the diagram to the polar curve in (a), evidenced by		
	use of the polar area formula		
M1:	Uses double angle identities		
A1:	Correct integral		
M1:	Integrates and applies limits		
A1:	Correct area		
(b)(ii)	Alternative:		
M1:	Selects an appropriate method by finding angle ACB and area of sector ACB and finds area		
	of triangle OCB to make progress towards finding the required area		
A1:	Correct combined area of sector ACB + triangle OCB		
M1:	Starts the process of finding the area of triangle <i>OAC</i> by calculating angle <i>ACO</i> and attempts		
	area of triangle OAC		
M1:	Uses the addition formula to find the exact area of triangle OAC and employs a full correct		
	method to find the area of the shaded region		
A1:	Correct area		

Question	Scheme	Marks	AOs
7(a)	$r = 10 \frac{\mathrm{d}f}{\mathrm{d}t} - 2f \Longrightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = 10 \frac{\mathrm{d}^2 f}{\mathrm{d}t^2} - 2 \frac{\mathrm{d}f}{\mathrm{d}t}$	M1	2.1
	$10\frac{d^2f}{dt^2} - 2\frac{df}{dt} = -0.2f + 0.4\left(10\frac{df}{dt} - 2f\right)$	M1	2.1
	$\frac{d^2 f}{dt^2} - 0.6 \frac{df}{dt} + 0.1 f = 0 *$	A1*	1.1b
		(3)	
(b)	$m^2 - 0.6m + 0.1 = 0 \Longrightarrow m = \frac{0.6 \pm \sqrt{0.6^2 - 4 \times 0.1}}{2}$	M1	3.4
	$m = 0.3 \pm 0.1$ i	A1	1.1b
	$f = e^{\alpha t} \left(A \cos \beta t + B \sin \beta t \right)$	M1	3.4
	$f = e^{0.3t} \left(A \cos 0.1t + B \sin 0.1t \right)$	A1	1.1b
		(4)	
(c)	$\frac{\mathrm{d}f}{\mathrm{d}t} = 0.3\mathrm{e}^{0.3t} \left(A\cos 0.1t + B\sin 0.1t \right) + 0.1\mathrm{e}^{0.3t} \left(B\cos 0.1t - A\sin 0.1t \right)$	M1	3.4
	$r = 10\frac{df}{dt} - 2f$ = $e^{0.3t} \left((3.4 + B)\cos 0.1t + (3B - A)\sin 0.1t \right) - 2e^{0.3t} \left(4\cos 0.1t + B\sin 0.1t \right)$	M1	3.4
	$= c \left((3H + D) \cos \theta + (3D + H) \sin \theta \cdot u \right) = c \left(H\cos \theta \cdot u + D\sin \theta \cdot u \right)$		
	$r = e^{-\Delta t} \left((A + B) \cos 0.1t + (B - A) \sin 0.1t \right)$	Al	l.lb
		(3)	
(u)(l)	$t = 0, f = 6 \Longrightarrow A = 6$	Ml	3.1b
	$t = 0, r = 20 \Longrightarrow B = 14$	M1	3.3
	$r = e^{0.3t} \left(20\cos 0.1t + 8\sin 0.1t \right) = 0$	M1	3.1b
	$\tan 0.1t = -2.5$	A1	1.1b
	2019	A1	3.2a
(d)(ii)	3750 foxes	B1	3.4
(d)(iii)	e.g. the model predicts a large number of foxes are on the island when the rabbits have died out and this may not be sensible	B1	3.5a
		(7)	
		(17 n	narks)

Notes	:
(a)	
M1:	Attempts to differentiate the first equation with respect to t
M1:	Proceeds to the printed answer by substituting into the second equation
A1*:	Achieves the printed answer with no errors
(b)	
M1:	Uses the model to form and solve the auxiliary equation
A1:	Correct values for <i>m</i>
M1:	Uses the model to form the CF
A1:	Correct CF
(c)	
M1:	Differentiates the expression for the number of foxes
M1:	Uses this result to find an expression for the number of rabbits
A1:	Correct equation
(d)(i)	
M1:	Realises the need to use the initial conditions in the model for the number of foxes
M1:	Realises the need to use the initial conditions in the model for the number of rabbits to find
	both unknown constants
M1:	Obtains an expression for r in terms of t and sets = 0
A1:	Rearranges and obtains a correct value for tan
A1:	Identifies the correct year
(d)(ii)	
B1:	Correct number of foxes
(d)(iii)	
B1:	Makes a suitable comment on the outcome of the model