Paper 2: Core Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(i)	$\alpha+\beta+\gamma=8, \quad \alpha \beta+\beta \gamma+\gamma \alpha=28, \quad \alpha \beta \gamma=32$	B1	3.1a
	$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}$	M1	1.1b
	$=\frac{7}{8}$	A1ft	1.1b
		(3)	
(ii)	$(\alpha+2)(\beta+2)(\gamma+2)=(\alpha \beta+2 \alpha+2 \beta+4)(\gamma+2)$	M1	1.1b
	$=\alpha \beta \gamma+2(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)+8$	A1	1.1b
	$=32+2(28)+4(8)+8=128$	A1	1.1b
		(3)	
	Alternative:		
	$(x-2)^{3}-8(x-2)^{2}+28(x-2)-32=0$	M1	1.1b
	$=\ldots-8+\ldots-32+\ldots-56-32=-128$	A1	1.1b
	$\therefore(\alpha+2)(\beta+2)(\gamma+2)=128$	A1	1.1b
		(3)	
(iii)	$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$	M1	3.1a
	$=8^{2}-2(28)=8$	A1ft	1.1b
		(2)	

(8 marks)

Notes:

(i)

B1: Identifies the correct values for all 3 expressions (can score anywhere)
M1: Uses a correct identity
A1ft: Correct value (follow through their 8, 28 and 32)
(ii)

M1: Attempts to expand
A1: Correct expansion
A1: Correct value

Alternative:

M1: Substitutes $x-2$ for x in the given cubic
A1: Calculates the correct constant term
A1: Changes sign and so obtains the correct value

(iii)

M1: Establishes the correct identity
A1ft: Correct value (follow through their 8, 28 and 32)

Question	Scheme	Marks	AOs
2(a)	$\left(\begin{array}{r}3 \\ -4 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}6 \\ 2 \\ 12\end{array}\right)=18-8+24$	M1	3.1a
	$d=\frac{18-8+24-5}{\sqrt{3^{2}+4^{2}+2^{2}}}$	M1	1.1b
	$=\sqrt{29}$	A1	1.1 b
		(3)	
(b)	$\left(\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)=\ldots$ and $\left(\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{r}1 \\ -1 \\ -2\end{array}\right)=\ldots$	M1	2.1
	$\left(\begin{array}{r} -1 \\ -3 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 1 \\ 5 \end{array}\right)=0 \text { and }\left(\begin{array}{r} -1 \\ -3 \\ 1 \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ -1 \\ -2 \end{array}\right)=0$ $\therefore-\mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is perpendicular to Π_{2}	A1	2.2a
		(2)	
(c)	$\left(\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{r}3 \\ -4 \\ 2\end{array}\right)=-3+12+2$	M1	1.1b
	$\begin{aligned} & \sqrt{(-1)^{2}+(-3)^{2}+1^{2}} \sqrt{(3)^{2}+(-4)^{2}+2^{2}} \cos \theta=11 \\ & \Rightarrow \cos \theta=\frac{11}{\sqrt{(-1)^{2}+(-3)^{2}+1^{2}} \sqrt{(3)^{2}+(-4)^{2}+2^{2}}} \end{aligned}$	M1	2.1
	So angle between planes $\theta=52^{\circ} *$	A1*	2.4
		(3)	
(8 marks)			

Notes:

(a)

M1: Realises the need to and so attempts the scalar product between the normal and the position vector

M1: Correct method for the perpendicular distance
A1: Correct distance
(b)

M1: Recognises the need to calculate the scalar product between the given vector and both direction vectors

A1: Obtains zero both times and makes a conclusion
(c)

M1: Calculates the scalar product between the two normal vectors
M1: Applies the scalar product formula with their 11 to find a value for $\cos \theta$
$\mathbf{A 1 *}$: Identifies the correct angle by linking the angle between the normal and the angle between the planes

Notes:

(i)(a)

M1: Attempts determinant, equates to zero and attempts to solve for a in order to establish the restriction for a

A1: Provides the correct condition for a if \mathbf{M} has an inverse
(i)(b)

B1: A correct matrix of minors or cofactors
M1: For a complete method for the inverse
A1ft: Two correct rows following through their determinant
A1ft: Fully correct inverse following through their determinant
(ii)

B1: Shows the statement is true for $n=1$
M1: Assumes the statement is true for $n=k$
M1: Attempts to multiply the correct matrices
A1: Correct matrix in terms of k
A1: \quad Correct matrix in terms of $k+1$
A1: Correct complete conclusion

Question	Scheme	Marks	AOs
4(a)	$z^{n}+z^{-n}=\cos n \theta+\mathrm{i} \sin n \theta+\cos n \theta-\mathrm{i} \sin n \theta$	M1	2.1
	$=2 \cos n \theta^{*}$	A1*	1.1b
		(2)	
(b)	$\left(z+z^{-1}\right)^{4}=16 \cos ^{4} \theta$	B1	2.1
	$\left(z+z^{-1}\right)^{4}=z^{4}+4 z^{2}+6+4 z^{-2}+z^{-4}$	M1	2.1
	$=z^{4}+z^{-4}+4\left(z^{2}+z^{-2}\right)+6$	A1	1.1b
	$=2 \cos 4 \theta+4(2 \cos 2 \theta)+6$	M1	2.1
	$\cos ^{4} \theta=\frac{1}{8}(\cos 4 \theta+4 \cos 2 \theta+3) *$	A1*	1.1b
		(5)	
(7 marks)			
Notes:			
(a) M1: Identifies the correct form for z^{n} and z^{-n} and adds to progress to the printed answer A1*: Achieves printed answer with no errors			
(b) B1: Begins the argument by using the correct index with the result from part (a) M1: Realises the need to find the expansion of $\left(z+z^{-1}\right)^{4}$ A1: Terms correctly combined M1: Links the expansion with the result in part (a) A1*: Achieves printed answer with no errors			

Question	Marks	AOs	
5(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin x \cosh x+\cos x \sinh x$	M1	1.1a
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\cos x \cosh x+\sin x \sinh x+\cos x \cosh x-\sin x \sinh x$			
$(=2 \cos x \cosh x)$	M1	1.1 b	

\begin{tabular}{|c|c|c|c|}
\hline Question \& Scheme \& Marks \& AOs

\hline 6(a)(i) \& \& M1

A1 \& 1.1 b

1.1 b

\hline \multirow[t]{5}{*}{(a)(ii)} \& $|z-4-3 i|=5 \Rightarrow|x+i y-4-3 i|=5 \Rightarrow(x-4)^{2}+(y-3)^{2}=\ldots$ \& M1 \& 2.1

\hline \& $(x-4)^{2}+(y-3)^{2}=25$ or any correct form \& A1 \& 1.1 b

\hline \& $$
\begin{gathered}
(r \cos \theta-4)^{2}+(r \sin \theta-3)^{2}=25 \\
\Rightarrow r^{2} \cos ^{2} \theta-8 r \cos \theta+16+r^{2} \sin ^{2} \theta-6 r \sin \theta+9=25 \\
\Rightarrow r^{2}-8 r \cos \theta-6 r \sin \theta=0
\end{gathered}
$$ \& M1 \& 2.1

\hline \& $\therefore r=8 \cos \theta+6 \sin \theta^{*}$ \& A1* \& 2.2a

\hline \& \& (6) \&

\hline (b)(i) \& \& B1 \& 1.1 b

\hline \& \& B1ft \& 1.1 b

\hline \multirow[t]{6}{*}{(b)(ii)} \& $$
\begin{aligned}
& A=\frac{1}{2} \int r^{2} \mathrm{~d} \theta=\frac{1}{2} \int(8 \cos \theta+6 \sin \theta)^{2} \mathrm{~d} \theta \\
& =\frac{1}{2} \int\left(64 \cos ^{2} \theta+96 \sin \theta \cos \theta+36 \sin ^{2} \theta\right) \mathrm{d} \theta
\end{aligned}
$$ \& M1 \& 3.1a

\hline \& $=\frac{1}{2} \int(32(\cos 2 \theta+1)+96 \sin \theta \cos \theta+18(1-\cos 2 \theta)) \mathrm{d} \theta$ \& M1 \& 1.1 b

\hline \& $=\frac{1}{2} \int(14 \cos 2 \theta+50+48 \sin 2 \theta) \mathrm{d} \theta$ \& A1 \& 1.1b

\hline \& $=\frac{1}{2}[7 \sin 2 \theta+50 \theta-24 \cos 2 \theta]_{0}^{\frac{\pi}{3}}=\frac{1}{2}\left\{\left(\frac{7 \sqrt{3}}{2}+\frac{50 \pi}{3}+12\right)-(-24)\right\}$ \& M1 \& 2.1

\hline \& $=\frac{7 \sqrt{3}}{4}+\frac{25 \pi}{3}+18$ \& A1 \& 1.1b

\hline \& \& (7) \&

\hline
\end{tabular}

Question	Scheme	Marks	AOs
	Alternative: Candidates may take a geometric approach e.g. by finding sector +2 triangles		
	Angle $A C B=\left(\frac{2 \pi}{3}\right)$ so area sector $A C B=\frac{1}{2}(5)^{2} \frac{2 \pi}{3}$ Area of triangle $O C B=\frac{1}{2} \times 8 \times 3$	M1	3.1a
	Sector area $A C B+$ triangle area $O C B=\frac{25 \pi}{3}+12$	A1	1.1b
	Area of triangle $O A C$: $\begin{aligned} & \text { Angle } A C O=2 \pi-\frac{2 \pi}{3}-\cos ^{-1}\left(\frac{5^{2}+5^{2}-8^{2}}{2 \times 5 \times 5}\right) \\ & \text { so area } O A C=\frac{1}{2}(5)^{2} \sin \left(\frac{4 \pi}{3}-\cos ^{-1}\left(\frac{-7}{25}\right)\right) \end{aligned}$	M1	1.1b
	$\begin{aligned} & =\frac{25}{2}\left(\sin \frac{4 \pi}{3} \cos \left(\cos ^{-1}\left(\frac{-7}{25}\right)\right)-\cos \frac{4 \pi}{3} \sin \left(\cos ^{-1}\left(\frac{-7}{25}\right)\right)\right) \\ & =\frac{25}{2}\left(\left(\frac{7 \sqrt{3}}{50}\right)+\frac{1}{2} \sqrt{1-\left(\frac{7}{25}\right)^{2}}\right)=\frac{7 \sqrt{3}}{4}+6 \\ & \text { Total area }=\frac{25 \pi}{3}+\frac{1}{2} \times 8 \times 3+6+\frac{7 \sqrt{3}}{4} \end{aligned}$	M1	2.1
	$=\frac{7 \sqrt{3}}{4}+\frac{25 \pi}{3}+18$	A1	1.1b
(13 marks)			

Notes:

(a)(i)

M1: Draws a circle which passes through the origin
A1: Fully correct diagram

(a)(ii)

M1: Uses $z=x+\mathrm{i} y$ in the given equation and uses modulus to find equation in x and y only
A1: Correct equation in terms of x and y in any form - may be in terms of r and θ
M1: Introduces polar form, expands and uses $\cos ^{2} \theta+\sin ^{2} \theta=1$ leading to a polar equation
$\mathbf{A 1 *}$: Deduces the given equation (ignore any reference to $r=0$ which gives a point on the curve)

(b)(i)

B1: Correct pair of rays added to their diagram
B1ft: Area between their pair of rays and inside their circle from (a) shaded, as long as there is an intersection

(b)(ii)

M1: Selects an appropriate method by linking the diagram to the polar curve in (a), evidenced by use of the polar area formula
M1: Uses double angle identities
A1: Correct integral
M1: Integrates and applies limits
A1: Correct area

(b)(ii) Alternative:

M1: Selects an appropriate method by finding angle $A C B$ and area of sector $A C B$ and finds area of triangle $O C B$ to make progress towards finding the required area
A1: \quad Correct combined area of sector $A C B+$ triangle $O C B$
M1: Starts the process of finding the area of triangle $O A C$ by calculating angle $A C O$ and attempts area of triangle $O A C$
M1: Uses the addition formula to find the exact area of triangle $O A C$ and employs a full correct method to find the area of the shaded region
A1: Correct area

Question	Scheme	Marks	AOs
7(a)	$r=10 \frac{\mathrm{~d} f}{\mathrm{~d} t}-2 f \Rightarrow \frac{\mathrm{~d} r}{\mathrm{~d} t}=10 \frac{\mathrm{~d}^{2} f}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} f}{\mathrm{~d} t}$	M1	2.1
	$10 \frac{\mathrm{~d}^{2} f}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} f}{\mathrm{~d} t}=-0.2 f+0.4\left(10 \frac{\mathrm{~d} f}{\mathrm{~d} t}-2 f\right)$	M1	2.1
	$\frac{\mathrm{d}^{2} f}{\mathrm{~d} t^{2}}-0.6 \frac{\mathrm{~d} f}{\mathrm{~d} t}+0.1 f=0$ *	A1*	1.1b
		(3)	
(b)	$m^{2}-0.6 m+0.1=0 \Rightarrow m=\frac{0.6 \pm \sqrt{0.6^{2}-4 \times 0.1}}{2}$	M1	3.4
	$m=0.3 \pm 0.1 \mathrm{i}$	A1	1.1b
	$f=\mathrm{e}^{\alpha t}(A \cos \beta t+B \sin \beta t)$	M1	3.4
	$f=\mathrm{e}^{0.3 t}(A \cos 0.1 t+B \sin 0.1 t)$	A1	1.1b
		(4)	
(c)	$\frac{\mathrm{d} f}{\mathrm{~d} t}=0.3 \mathrm{e}^{0.3 t}(A \cos 0.1 t+B \sin 0.1 t)+0.1 \mathrm{e}^{0.3 t}(B \cos 0.1 t-A \sin 0.1 t)$	M1	3.4
	$\begin{gathered} r=10 \frac{\mathrm{~d} f}{\mathrm{~d} t}-2 f \\ =\mathrm{e}^{0.3 t}((3 A+B) \cos 0.1 t+(3 B-A) \sin 0.1 t)-2 \mathrm{e}^{0.3 t}(A \cos 0.1 t+B \sin 0.1 t) \end{gathered}$	M1	3.4
	$r=\mathrm{e}^{0.3 t}((A+B) \cos 0.1 t+(B-A) \sin 0.1 t)$	A1	1.1b
		(3)	
(d)(i)	$t=0, f=6 \Rightarrow A=6$	M1	3.1b
	$t=0, r=20 \Rightarrow B=14$	M1	3.3
	$r=\mathrm{e}^{0.3 t}(20 \cos 0.1 t+8 \sin 0.1 t)=0$	M1	3.1b
	$\tan 0.1 t=-2.5$	A1	1.1b
	2019	A1	3.2a
(d)(ii)	3750 foxes	B1	3.4
(d)(iii)	e.g. the model predicts a large number of foxes are on the island when the rabbits have died out and this may not be sensible	B1	3.5a
		(7)	

(17 marks)

Notes:

(a)

M1: Attempts to differentiate the first equation with respect to t
M1: Proceeds to the printed answer by substituting into the second equation
A1*: Achieves the printed answer with no errors
(b)

M1: Uses the model to form and solve the auxiliary equation
A1: \quad Correct values for m
M1: Uses the model to form the CF
A1: Correct CF
(c)

M1: Differentiates the expression for the number of foxes
M1: Uses this result to find an expression for the number of rabbits
A1: Correct equation
(d)(i)

M1: Realises the need to use the initial conditions in the model for the number of foxes
M1: Realises the need to use the initial conditions in the model for the number of rabbits to find both unknown constants

M1: Obtains an expression for r in terms of t and sets $=0$
A1: Rearranges and obtains a correct value for tan
A1: Identifies the correct year
(d)(ii)

B1: Correct number of foxes
(d)(iii)

B1: Makes a suitable comment on the outcome of the model

