Paper 1: Core Pure Mathematics 1 Mark Scheme

Question	Scheme	Marks	AOs
1	$\frac{1}{(r+1)(r+3)} \equiv \frac{A}{(r+1)}+\frac{B}{(r+3)} \Rightarrow A=\ldots, B=\ldots$	M1	3.1a
	$\begin{aligned} & \sum_{r=1}^{n} \frac{1}{(r+1)(r+3)}= \\ & \frac{1}{2 \times 2}-\frac{1}{2 \times 4}+\frac{1}{2 \times 3}-\frac{1}{2 \times 5}+\ldots+\frac{1}{2 n}-\frac{1}{2(n+2)}+\frac{1}{2(n+1)}-\frac{1}{2(n+3)} \end{aligned}$	M1	2.1
	$=\frac{1}{4}+\frac{1}{6}-\frac{1}{2(n+2)}-\frac{1}{2(n+3)}$	A1	2.2a
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{12(n+2)(n+3)}$	M1	1.1b
	$=\frac{n(5 n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
	Alternative by induction: $\begin{gathered} n=1 \Rightarrow \frac{1}{8}=\frac{a+b}{12 \times 3 \times 4}, n=2 \Rightarrow \frac{1}{8}+\frac{1}{15}=\frac{2(2 a+b)}{12 \times 4 \times 5} \\ a+b=18,2 a+b=23 \Rightarrow a=\ldots, b=\ldots \end{gathered}$	M1	3.1a
	Assume true for $n=k$ so $\sum_{r=1}^{k} \frac{1}{(r+1)(r+3)}=\frac{k(5 k+13)}{12(k+2)(k+3)}$		
	$\sum_{r=1}^{k+1} \frac{1}{(r+1)(r+3)}=\frac{k(5 k+13)}{12(k+2)(k+3)}+\frac{1}{(k+2)(k+4)}$	M1	2.1
	$\frac{k(5 k+13)}{12(k+2)(k+3)}+\frac{1}{(k+2)(k+4)}=\frac{k(5 k+13)(k+4)+12(k+3)}{12(k+2)(k+3)(k+4)}$	A1	2.2a
	$=\frac{5 k^{3}+33 k^{2}+52 k+12 k+36}{12(k+2)(k+3)(k+4)}=\frac{(k+1)(k+2)(5 k+18)}{12(k+2)(k+3)(k+4)}$	M1	1.1b
	$=\frac{(\underline{k+1})(5(\underline{k+1})+13)}{12(\underline{k+1}+2)(\underline{k+1}+3)}$ So true for $n=k+1$ So $\quad \sum_{r=1}^{n} \frac{1}{(r+1)(r+3)}=\frac{n(5 n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	

(5 marks)

Question 1 notes:

Main Scheme
M1: Valid attempt at partial fractions
M1: Starts the process of differences to identify the relevant fractions at the start and end
A1: Correct fractions that do not cancel
M1: Attempt common denominator
A1: Correct answer
Alternative by Induction:
M1: Uses $n=1$ and $n=2$ to identify values for a and b
M1: \quad Starts the induction process by adding the $(k+1)^{\text {th }}$ term to the sum of k terms
A1: Correct single fraction
M1: Attempt to factorise the numerator
A1: Correct answer and conclusion

Question	Scheme	Marks	AOs
2	When $n=1,2^{3 n+1}+3\left(5^{2 n+1}\right)=16+375=391$ $391=17 \times 23$ so the statement is true for $n=1$	B1	2.2a
	Assume true for $n=k$ so $2^{3 k+1}+3\left(5^{2 k+1}\right)$ is divisible by 17	M1	2.4
	$\mathrm{f}(k+1)-\mathrm{f}(k)=2^{3 k+4}+3\left(5^{2 k+3}\right)-2^{3 k+1}-3\left(5^{2 k+1}\right)$	M1	2.1
	$=7 \times 2^{3 k+1}+7 \times 3\left(5^{2 k+1}\right)+17 \times 3\left(5^{2 k+1}\right)$		
	$=7 \mathrm{f}(k)+17 \times 3\left(5^{2 k+1}\right)$	A1	1.1b
	$\mathrm{f}(k+1)=8 \mathrm{f}(k)+17 \times 3\left(5^{2 k+1}\right)$	A1	1.1b
	If the statement is true for $n=k$ then it has been shown true for $n=k+1$ and as it is true for $n=1$, the statement is true for all positive integers n	A1	2.4
		(6)	
(6 marks)			
Notes:			
B1: Shows the statement is true for $n=1$ M1: Assumes the statement is true for $n=k$ M1: Attempts $\mathrm{f}(k+1)-\mathrm{f}(k)$ A1: Correct expression in terms of $\mathrm{f}(k)$ A1: Correct expression in terms of $\mathrm{f}(k)$ A1: Obtains a correct expression for $\mathrm{f}(k+1)$ A1: Correct complete conclusion			

Question	Scheme	Marks	AOs
3	$z=3-2 \mathrm{i}$ is also a root	B1	1.2
	$\begin{aligned} & \qquad(z-(3+2 \mathrm{i}))(z-(3-2 \mathrm{i}))=\ldots \\ & \text { or } \\ & \text { Sum of roots }=6, \text { Product of roots }=13 \Rightarrow \ldots \end{aligned}$	M1	3.1a
	$=z^{2}-6 z+13$	A1	1.1 b
	$\left(z^{4}+a z^{3}+6 z^{2}+b z+65\right)=\left(z^{2}-6 z+13\right)\left(z^{2}+c z+5\right) \Rightarrow c=\ldots$	M1	3.1a
	$z^{2}+2 z+5=0$	A1	1.1b
	$z^{2}+2 z+5=0 \Rightarrow z=\ldots$	M1	1.1a
	$z=-1 \pm 2 \mathrm{i}$	A1	1.1b
		$\begin{gathered} \text { B1 } \\ 3 \pm 2 \mathrm{i} \end{gathered}$ Plotted correctly	1.1 b
		$\begin{gathered} \mathrm{B} 1 \mathrm{ft} \\ -1 \pm 2 \mathrm{i} \end{gathered}$ Plotted correctly	1.1 b
(9 marks)			
Notes:			
B1: Identifies the complex conjugate as another root			
M1: Uses the conjugate pair and a correct method to find a quadratic factor A1: Correct quadratic			
M1: Uses the given quartic and their quadratic to identify the value of c			
A1: Correct 3TQ			
M1: Solves their second quadratic			
A1: Correct second conjugate pair			
B1ft:	First conjugate pair plotted correctly and labelled		
	Second conjugate pair plotted correctly and labelled (Follow through their second onjugate pair)		

Question
4

Question	Scheme	Marks	AOs
5(a)	Pond contains $1000+5 t$ litres after t days	M1	3.3
	If x is the amount of pollutant in the pond after t days Rate of pollutant out $=20 \times \frac{x}{1000+5 t}$ g per day	M1	3.3
	Rate of pollutant in $=25 \times 2 \mathrm{~g}=50 \mathrm{~g}$ per day	B1	2.2a
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=50-\frac{4 x}{200+t} *$	A1*	1.1b
		(4)	
(b)	$I=\mathrm{e}^{\int \frac{4}{200+t} \mathrm{~d} t}=(200+t)^{4} \Rightarrow x(200+t)^{4}=\int 50(200+t)^{4} \mathrm{~d} t$	M1	3.1b
	$x(200+t)^{4}=10(200+t)^{5}+c$	A1	1.1b
	$x=0, t=0 \Rightarrow c=-3.2 \times 10^{12}$	M1	3.4
	$t=8 \Rightarrow x=10(200+8)-\frac{3.2 \times 10^{12}}{(200+8)^{4}}$	M1	1.1b
	$=370 \mathrm{~g}$	A1	2.2b
		(5)	
(c)	e.g. - The model should take into account the fact that the pollutant does not dissolve throughout the pond upon entry - The rate of leaking could be made to vary with the volume of water in the pond	B1	3.5c
		(1)	
(10 marks)			
Notes:			
(a) M1: Forms an expression of the form $1000+k t$ for the volume of water in the pond at time t M1: Expresses the amount of pollutant out in terms of x and t B1: Correct interpretation for pollutant entering the pond A1*: Puts all the components together to form the correct differential equation			
(b) M1: Uses the model to find the integrating factor and attempts solution of their differential equation A1: Correct solution M1: Interprets the initial conditions to find the constant of integration M1: Uses their solution to the problem to find the amount of pollutant after 8 days A1: Correct number of grams			
(c) B1: Suggests a suitable refinement to the model			

Question	Scheme	Marks	AOs
6(a)	$\mathrm{f}(x)=\frac{x+2}{x^{2}+9}=\frac{x}{x^{2}+9}+\frac{2}{x^{2}+9}$	B1	3.1a
	$\int \frac{x}{x^{2}+9} \mathrm{~d} x=k \ln \left(x^{2}+9\right)(+c)$	M1	1.1b
	$\int \frac{2}{x^{2}+9} \mathrm{~d} x=k \arctan \left(\frac{x}{3}\right)(+c)$	M1	1.1b
	$\int \frac{x+2}{x^{2}+9} \mathrm{~d} x=\frac{1}{2} \ln \left(x^{2}+9\right)+\frac{2}{3} \arctan \left(\frac{x}{3}\right)+c$	A1	1.1b
		(4)	
(b)	$\begin{aligned} \int_{0}^{3} \mathrm{f}(x) \mathrm{d} x & =\left[\frac{1}{2} \ln \left(x^{2}+9\right)+\frac{2}{3} \arctan \left(\frac{x}{3}\right)\right]_{0}^{3} \\ =\frac{1}{2} \ln 18 & +\frac{2}{3} \arctan \left(\frac{3}{3}\right)-\left(\frac{1}{2} \ln 9+\frac{2}{3} \arctan (0)\right) \\ = & \frac{1}{2} \ln \frac{18}{9}+\frac{2}{3} \arctan \left(\frac{3}{3}\right) \end{aligned}$	M1	1.1b
	Mean value $=\frac{1}{3-0}\left(\frac{1}{2} \ln 2+\frac{\pi}{6}\right)$	M1	2.1
	$\frac{1}{6} \ln 2+\frac{1}{18} \pi^{*}$	A1*	2.2a
		(3)	
(c)	$\frac{1}{6} \ln 2+\frac{1}{18} \pi+\ln k$	M1	2.2a
	$\frac{1}{6} \ln 2 k^{6}+\frac{1}{18} \pi$	A1	1.1b
		(2)	
(9 marks)			
Notes:			
(a) B1: Splits the fraction into two correct separate expressions M1: Recognises the required form for the first integration M1: Recognises the required form for the second integration A1: Both expressions integrated correctly and added together with constant of integration included			
(b) M1: Uses limits correctly and combines logarithmic terms M1: Correctly applies the method for the mean value for their integration A1*: Correct work leading to the given answer			
(c) M1: Realises that the effect of the transformation is to increase the mean value by $\ln k$ A1: Combines ln's correctly to obtain the correct expression			

Question	Scheme	Marks	AOs
7(a)	$x=\cos \theta+\sin \theta \cos \theta=-y \cos \theta$	M1	2.1
	$\sin \theta=-y-1$	M1	2.1
	$\left(\frac{x}{-y}\right)^{2}=1-(-y-1)^{2}$	M1	2.1
	$x^{2}=-\left(y^{4}+2 y^{3}\right)^{*}$	A1*	1.1b
		(4)	
(b)	$V=\pi \int x^{2} \mathrm{~d} y=\pi \int-\left(y^{4}+2 y^{3}\right) \mathrm{d} y$	M1	3.4
	$=\pi\left[-\left(\frac{y^{5}}{5}+\frac{y^{4}}{2}\right)\right]$	A1	1.1b
	$=-\pi\left[\left(\frac{(0)^{5}}{5}+\frac{(0)^{4}}{2}\right)-\left(\frac{(-2)^{5}}{5}+\frac{(-2)^{4}}{2}\right)\right]$	M1	3.4
	$=1.6 \pi \mathrm{~cm}^{3}$ or awrt $5.03 \mathrm{~cm}^{3}$	A1	1.1b
		(4)	
(8 marks)			
Notes:			
(a) M1: Obtains x in terms of y and $\cos \theta$ M1: Obtains an equation connecting y and $\sin \theta$ M1: Uses Pythagoras to obtain an equation in x and y only A1*: Obtains printed answer			
(b) M1: Uses the correct volume of revolution formula with the given expression A1: Correct integration M1: Correct use of correct limits A1: Correct volume			

Question	Scheme	Marks	AOs
8	$2+4 \lambda-2(4-2 \lambda)-6+\lambda=6 \Rightarrow \lambda=\ldots$	M1	1.1b
	$\begin{aligned} & \lambda=2 \Rightarrow \text { Required point is }(2+2(4), 4+2(-2),-6+2(1)) \\ & (10,0,-4) \end{aligned}$	A1	1.1b
	$2+t-2(4-2 t)-6+t=6 \Rightarrow t=\ldots$	M1	3.1a
	$t=3$ so reflection of $(2,4,-6)$ is $(2+6(1), 4+6(-2),-6+6(1))$	M1	3.1a
	$(8,-8,0)$	A1	1.1b
	$\left(\begin{array}{r}10 \\ 0 \\ -4\end{array}\right)-\left(\begin{array}{r}8 \\ -8 \\ 0\end{array}\right)=\left(\begin{array}{r}2 \\ 8 \\ -4\end{array}\right)$	M1	3.1a
	$\mathbf{r}=\left(\begin{array}{r}10 \\ 0 \\ -4\end{array}\right)+k\left(\begin{array}{r}1 \\ 4 \\ -2\end{array}\right)$ or equivalent e.g. $\left(\mathbf{r}-\left(\begin{array}{r}10 \\ 0 \\ -4\end{array}\right)\right) \times\left(\begin{array}{r}1 \\ 4 \\ -2\end{array}\right)=\mathbf{0}$	A1	2.5
		(7)	

Notes:

M1: Substitutes the parametric equation of the line into the equation of the plane and solves for λ
A1: Obtains the correct coordinates of the intersection of the line and the plane
M1: Substitutes the parametric form of the line perpendicular to the plane passing through $(2,4,-6)$ into the equation of the plane to find t
M1: Find the reflection of $(2,4,-6)$ in the plane
A1: Correct coordinates
M1: Determines the direction of l by subtracting the appropriate vectors
A1: Correct vector equation using the correct notation

Question	Scheme	Marks	AOs
9(a)(i)	Weight $=\operatorname{mass} \times \mathrm{g} \Rightarrow m=\frac{30000}{g}=3000$ But mass is in thousands of kg , so $m=3$	M1	3.3
(ii)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=40 \cos t+20 \sin t, \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-40 \sin t+20 \cos t$	M1	1.1 b
	$\begin{aligned} & 3(-40 \sin t+20 \cos t)+4(40 \cos t+20 \sin t) \\ & +40 \sin t-20 \cos t=\ldots \end{aligned}$	M1	1.1 b
	$=200 \cos t$ so PI is $x=40 \sin t-20 \cos$	A1*	2.1
	or		
	Let $x=a \cos t+b \sin t$ $\frac{\mathrm{d} x}{\mathrm{~d} t}=-a \sin t+b \cos t, \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-a \cos t-b \sin t$	M1	1.1 b
	$4 b-2 a=200,-2 b-4 a=0 \Rightarrow a=\ldots, b=\ldots$	M1	2.1
	$x=40 \sin t-20 \cos t$	A1*	1.1b
(iii)	$3 \lambda^{2}+4 \lambda+1=0 \Rightarrow \lambda=-1,-\frac{1}{3}$	M1	1.1 b
	$x=A \mathrm{e}^{-t}+B \mathrm{e}^{-\frac{1}{3} t}$	A1	1.1 b
	$x=P I+C F$	M1	1.1 b
	$x=A \mathrm{e}^{-t}+B \mathrm{e}^{-\frac{1}{3} t}+40 \sin t-20 \cos t$	A1	1.1 b
		(8)	
(b)	$t=0, x=0 \Rightarrow A+B=20$	M1	3.4
	$\begin{gathered} x=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=-A e^{-t}-\frac{1}{3} B e^{-\frac{1}{3} t}+40 \cos t+20 \sin t=0 \\ \Rightarrow A+\frac{1}{3} B=40 \end{gathered}$	M1	3.4
	$x=50 \mathrm{e}^{-t}-30 \mathrm{e}^{-\frac{1}{3} t}+40 \sin t-20 \cos t$	A1	1.1 b
	$t=9 \Rightarrow x=33 \mathrm{~m}$	A1	3.4
		(4)	
(12 marks)			

Question 9 notes:

(a)(i)

M1: Correct explanation that in the model, $m=3$
(ii)

M1: Differentiates the given PI twice
M1: Substitutes into the given differential equation
A1*: Reaches 200cost and makes a conclusion
or
M1: Uses the correct form for the PI and differentiates twice
M1: Substitutes into the given differential equation and attempts to solve
A1*: Correct PI
(iii)

M1: Uses the model to form and solve the auxiliary equation
A1: Correct complementary function
M1: Uses the correct notation for the general solution by combining PI and CF
A1: Correct General Solution for the model
(b)

M1: Uses the initial conditions of the model, $t=0$ at $x=0$, to form an equation in A and B
M1: Uses $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$ at $x=0$ in the model to form an equation in A and B
A1: Correct PS
A1: Obtains 33m using the assumptions made in the model

