IB Maths: Analysis & Approaches SL & HL

www.savemyexams.co.uk

Prior Learning SL & HL

Area of a parallelogram	A = bh	\boldsymbol{b} is the base, \boldsymbol{h} is the height
Area of a triangle	$A = \frac{1}{2}(bh)$	\boldsymbol{b} is the base, \boldsymbol{h} is the height
Area of a trapezium	$A = \frac{1}{2}(a+b)h$	\boldsymbol{a} and \boldsymbol{b} are the parallel sides, \boldsymbol{h} is the height
Area of a circle	$A = \pi r^2$	r is the radius
Circumference of a circle	$C = 2\pi r$	\boldsymbol{r} is the radius
Volume of a cuboid	V = lwh	$\it I$ is the length, $\it w$ is the width, $\it h$ is the height
Volume of a cylinder	$V = \pi r^2 h$	\emph{r} is the radius, \emph{h} is the height
Volume of a prism	V = Ah	\boldsymbol{A} is the area of cross–section, \boldsymbol{h} is the height
Area of the curved surface of a cylinder	$A = 2\pi rh$	\emph{r} is the radius, \emph{h} is the height
Distance between two points (x_1, y_1) & (x_2, y_2)	$d = \sqrt{(x_1 - x_2)^2 + (x_1 - x_2)^2 + (x_1 - x_2)^2}$	$\overline{(y_1 - y_2)^2}$
Coordinates of the midpoint of a line segment with endpoints $(x_1, y_1) \& (x_2, y_2)$	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$	

Topic 1: Number & Algebra - SL & HL

		d-JL & HL
The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$	
The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2} (2u_1 + (n-1)d); S_n$	$=\frac{n}{2}(u_1+u_n)$
The n th term of a geometric sequence	$u_n = u_1 r^{n-1}$	
The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r},$	$r \neq 1$
Compound interest	$FV = PV \times \left(1 + \frac{r}{100k}\right)^{4n}$	FV is the future value, PV is the present value, n is the number of years, k is the number of compounding periods per year, $r%$ is the nominal annual rate of interest
Exponents & logarithms	$a^x = b \iff x = \log_a b$	$a > 0, b > 0, a \neq 1$
Exponents & logarithms	$\begin{aligned} \log_a xy &= \log_a x + \log_a y \\ \log_a \frac{x}{y} &= \log_a x - \log_a y \\ \log_a x^m &= m \log_a x \\ \log_a x &= \frac{\log_b x}{\log_b a} \end{aligned}$	
The sum of an infinite geometric sequence	$S_{\infty} = \frac{u_1}{1-r}, \mid r \mid < 1$	
Binomial theorem	$(a+b)^n = a^n + {}^nC_1 \ a^{n-1}b + .$ ${}^nC_r = \frac{n!}{r!(n-r)!}$	$\dots + {}^{n}C_{r}a^{n-r}b^{r} + \dots + b^{n}$

Topic 1: Number & Algebra - HL only

•	
Combinations	${}^{n}\mathbf{C}_{r} = \frac{n!}{r!(n-r)!}$
Permutations	${}^{n}\mathbf{P}_{r} = \frac{n!}{(n-r)!}$
Complex numbers	z = a + bi
Modulus-argument (polar) & exponential (Euler) form	$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\operatorname{cis}\theta$
De Moivre's theorem	$[r(\cos\theta + i\sin\theta)]^{\sigma} = r^{\sigma}(\cos n\theta + i\sin n\theta) = r^{\sigma}e^{i\sigma\theta} = r^{\sigma}\cos n\theta$

Topic 2: Functions - SL & HL

Equations of a straight line	$y = mx + c$; $ax + by + d = 0$; $y - y_1 = m(x - x_1)$
Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Axis of symmetry of the graph of a quadratic function	$f(x) = ax^2 + bx + c \implies$ axis of symmetry is $x = -\frac{b}{2a}$
Solutions of a quadratic equation	$ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, $a \neq 0$
Discriminant	$\Delta = b^2 - 4ac$
Exponential & logarithmic functions	$a^{x} = e^{x \ln a}$; $\log_{a} a^{x} = x = a^{\log_{a} x}$ $a, x > 0, a \ne 1$

Topic 2: Functions - HL only

Sum & product of the roots of polynomial equations of the form $\sum_{r=0}^{n} a_r x' = 0$	Sum is $\frac{-a_{s-1}}{a_s}$: product is $\frac{\left(-1\right)^s a_0}{a_s}$	
--	--	--

Make sure you check that your Graphical Display Calculator is on the list of approved calculators released by the exam board

Level	Paper	Length	Marks
SL	1	90 mins	80
SL	2	90 mins	80
HL	1	2 hours	110
HL	2	2 hours	110
HL	3	1 hour	55

Topic 3: Geometry & Trigonometry - SL & HL

Topico Coome	cry a m	igonometry – 3L & HL
Distance between two points (x_1, y_1, z_1) & (x_2, y_2, z_2)	$d = \sqrt{(x_1 - x_2)^2} + \frac{1}{2}$	$+(y_1-y_2)^2+(z_1-z_2)^2$
Coordinates of the midpoint of a line segment with endpoints (x_1, y_1, z_1) & (x_2, y_2, z_2)	$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	$-\frac{z_1+z_2}{2}$
Volume of a right-pyramid	$V = \frac{1}{3}Ah$,	$\it A$ is the area of the base, $\it h$ is the height
Volume of a right cone	$V = \frac{1}{3}\pi r^2 h$	\emph{r} is the radius, \emph{h} is the height
Area of the curved surface of a cone	$A = \pi r l$	\boldsymbol{r} is the radius, \boldsymbol{l} is the slant height
Volume of a sphere	$V = \frac{4}{3}\pi r^3$	\emph{r} is the radius
Surface area of a sphere	$A = 4\pi r^2$	r is the radius
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{a}{\sin B}$	<u>c</u> sin C
Cosine rule	$c^2 = a^2 + b^2 - 2a$	$ab\cos C$; $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$
Area of a triangle	$A = \frac{1}{2}ab\sin C$	
Length of an arc	$l = r\theta$	\boldsymbol{r} is the radius $\boldsymbol{\theta}$ is the angle measured in radians
Area of a sector	$A = \frac{1}{2}r^2\theta$	\boldsymbol{r} is the radius, $\boldsymbol{\theta}$ is the angle measured in radians
Identity for $\tan \theta$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$	
Pythagorean identity	$\cos^2 \theta + \sin^2 \theta =$	1
Double angle identities	$\sin 2\theta = 2\sin \theta$ o	$\cos \theta$
	$\cos 2\theta = \cos^2 \theta$	$-\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$

Topic 3: Geometry & Trigonometry - HL only

$\sec\theta = \frac{1}{\cos\theta}$ $\csc\theta = \frac{1}{\sin\theta}$
$1 + \tan^2 \theta = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$
$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$
$\left y \right = \sqrt{{{v_1}^2} + {{v_2}^2} + {{v_3}^2}} \qquad \qquad \nu = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$
$\boldsymbol{\nu} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + v_3 w_3 \qquad \qquad \boldsymbol{\nu} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \ \boldsymbol{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$
$v \cdot w = v w \cos \theta$, where θ is the angle between v and w
$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{\left\ v \right\ \left\ w \right\ }$
$r = a + \lambda b$
$x = x_0 + \lambda l$, $y = y_0 + \lambda m$, $z = z_0 + \lambda n$
$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$
$\begin{split} \boldsymbol{\nu} \times \boldsymbol{w} &= \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}, \qquad \boldsymbol{v} &= \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \ \boldsymbol{w} &= \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \end{split}$
$ v \times w = v w \sin \theta$ is the angle between v and w
$A = \mathbf{v} \times \mathbf{w} $ v and w form two adjacent sides of a parallelogram
$r = a + \lambda b + \mu c$
$r \cdot n = a \cdot n$
ax + by + cz = d

Topic 4: Statistics & Probability - SL & HL

10010 1 0 14 11	
Interquartile range	$IQR = Q_3 - Q_1$
Mean, \overline{x} , of a set of data	$\overline{\chi} = \frac{\sum_{i=1}^{k} f_i \overline{x_i}}{n} \qquad \qquad n = \sum_{i=1}^{k} f_i$
Probability of an event $\it A$	$P(A) = \frac{n(A)}{n(U)}$
Complementary events	P(A) + P(A') = 1
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
Independent events	$P(A \cap B) = P(A) P(B)$
Expected value of a discrete random variable X	$E(X) = \sum x P(X = x)$
Binomial distribution $X \sim B(n, p)$	
Mean	E(X) = np
Variance	Var(X) = np(1-p)
Standardized normal	$z = \frac{x - \mu}{}$

Topic 4: Statistics & Probability – HL only

Bayes' theorem	$P(B A) = \frac{P(B) P(A B)}{P(B) P(A B) + P(B') P(A B')}$
	$P(B_{i} A) = \frac{P(B_{i})P(A B_{i})}{P(B_{i})P(A B_{i}) + P(B_{2})P(A B_{2}) + P(B_{3})P(A B_{3})}$
Variance σ^2	$\sigma^{2} = \frac{\sum_{i=1}^{k} f_{i} (x_{i} - \mu)^{2}}{n} = \frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n} - \mu^{2}$
Standard deviation σ	$\sigma = \sqrt{\frac{\sum_{i=1}^{L} f_i(x_i - \mu)^2}{n}}$
Linear transformation of a single random variable	$E(aX + b) = aE(X) + b$ $Var(aX + b) = a^{2} Var(X)$
Expected value of a continuous random variable X	$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$
Variance	$Var(X) = E(X - \mu)^2 = E(X^2) - [E(X)]^2$
Variance of a discrete random variable ${\cal X}$	$Var(X) = \sum (x - \mu)^2 P(X = x) = \sum x^2 P(X = x) - \mu^2$
Variance of a continuous random variable X	$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$

Topic 5: Calc	culus – SL & HL
Derivative of x"	$f(x) = x^n \implies f'(x) = nx^{n-1}$
Integral of x"	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
Area between a curve $y = f(x)$ & the x-axis, where $f(x) > 0$	$A = \int_{a}^{b} y \mathrm{d}x$
Derivative of sin x	$f(x) = \sin x \implies f'(x) = \cos x$
Derivative of cos x	$f(x) = \cos x \implies f'(x) = -\sin x$
Derivative of e ^x	$f(x) = e^x \implies f'(x) = e^x$
Derivative of $\ln x$	$f(x) = \ln x \implies f'(x) = \frac{1}{x}$
Chain rule	$y = g(u)$, where $u = f(x) \Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
Product rule	$y = uv \implies \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
Quotient rule	$y = \frac{u}{v} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$
Acceleration	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$
Distance travelled from t_1 to t_2	$distance = \int_{t_i}^{t_2} v(t) \mathrm{d}t$
Displacement from t_1 to t_2	$displacement = \int_{t_i}^{t_i} \nu(t) \mathrm{d}t$
Standard integrals	$\int \frac{1}{x} dx = \ln x + C \qquad \int \sin x dx = -\cos x + C$
	$\int \cos x dx = \sin x + C \qquad \qquad \int e^x dx = e^x + C$
Area of region enclosed by a curve and x-axis	$A = \int_{a}^{b} y \mathrm{d}x$

Derivative of $f(x)$ from first principles	$y = f(x) \Rightarrow \frac{dy}{dx} = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$
Standard derivatives	
tan x	$f(x) = \tan x \implies f'(x) = \sec^2 x$
sec x	$f(x) = \sec x \implies f'(x) = \sec x \tan x$
cosec x	$f(x) = \csc x \implies f'(x) = -\csc x \cot x$
cot x	$f(x) = \cot x \implies f'(x) = -\csc^2 x$
a^x	$f(x) = a^x \implies f'(x) = a^x (\ln a)$
$\log_a x$	$f(x) = \log_a x \implies f'(x) = \frac{1}{x \ln a}$
arcsin x	$f(x) = \arcsin x \Rightarrow f'(x) = \frac{1}{\sqrt{1 - x^2}}$
arccos x	$f(x) = \arccos x \implies f'(x) = -\frac{1}{\sqrt{1 - x^2}}$
arctan x	$f(x) = \arctan x \implies f'(x) = \frac{1}{1+x^2}$
Standard integrals	$\int a^x \mathrm{d}x = \frac{1}{\ln a} a^x + C$
	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$
	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C, x < a$
Integration by parts	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx \text{ or } \int u dv = uv - \int v du$
Area of region enclosed by a curve & y-axis	$A = \int_{a}^{b} x dy$
Volume of revolution about the x or y-axes	$V = \int_a^b \pi y^2 dx$ or $V = \int_a^b \pi x^2 dy$
Euler's method	$y_{n+1} = y_n + h \times f(x_n, y_n); \ x_{n+1} = x_n + h \qquad \qquad h \text{ is a constant (step length)}$
Integrating factor for $y' + P(x)y = Q(x)$	$e^{\int P(x)dx}$
Maclaurin series	$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots$
Maclaurin series for special functions	$e^x = 1 + x + \frac{x^2}{2!} + \dots$ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$
	$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$
	$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$