MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2				Mark Scheme: Teachers' version Syllabus P							
				GCE AS/A LEVEL – May/June 2012 9702							
1	(a)	disp disp mov (eitl	blace blace ved / her o	ment is a vector, distance is a scalar ment is straight line between two points / distance is sum of lengths example showing difference ne of the definitions for the second mark)							
	(b)	a b (ext	ody erna	continues at rest or at constant velocity unless acte l) force	d on by a <u>resu</u>	<u>ltant</u>	B1	[1]			
	(c)	(i)	sum thes <i>(allo</i> <i>torq</i>	a of T_1 and T_2 equals frictional force se two forces are in opposite directions ow for 1/2 for travelling in straight line hence no rot ue)	ation / no resu	ltant	B1 B1	[2]			
		(ii)	1.	scale vector triangle with correct orientation / vector orientation both with arrows scale given or mathematical analysis for tensions	triangle with co	rrect	B1 B1	[2]			
			2.	$T_1 = 10.1 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$ $T_2 = 16.4 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$			A1 A1	[2]			
2	(a)	weight = 452×9.81 component down the slope = $452 \times 9.81 \times \sin 14^{\circ}$ = $1072.7 = 1070 \text{ N}$									
	(b)	(i)	F = T - T =	ma (1070 + 525) = 452 × 0.13 1650 (1653.76)N any forces missing 1/3			C1 C1 A1	[3]			
		(ii)	1.	$s = ut + \frac{1}{2}at^2$ hence $10 = 0 + \frac{1}{2} \times 0.13t^2$ $t = [(2 \times 10) / 0.13]^{1/2} = 12.4$ or 12s			C1 A1	[2]			
			2.	$v = (0 + 2 \times 0.13 \times 10)^{1/2} = 1.61 \text{ or } 1.6 \text{ m s}^{-1}$			A1	[1]			
	(c)	straight line from the origin line down to zero velocity in short time compared to stage 1 line less steep negative gradient final velocity larger than final velocity in the first part – at least 2×									
3	(a)	$V = h \times A$ $m = V \times \rho$ $W = h \times A \times \rho \times g$ P = F / A P = h cg									
		P is	prop	portional to <i>h</i> if ρ is constant (and <i>g</i>)			B1	[4]			
	(b)	den hen	sity o	changes with height ensity is not constant with link to formula			B1 B1	[2]			

	Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper				
			GCE AS/A LEVEL – May/June 2012	9702	23				
4	(a) ele cha	ctric f arge)	ric field strength is the force <u>per unit positive</u> charge (acting on a stationary ge)						
	(b) (i)	E = = 12	V / d 00 / 14 × 10 ⁻³		C1				
		= 8.	$57 \times 10^4 \mathrm{V}\mathrm{m}^{-1}$		A1	[2]			
	(ii)	W = = 3.2	QV or $W = F \times d$ and therefore $W = E \times Q \times d$ 2 × 10 ⁻¹⁹ × 1200		C1				
		= 3.8	34 × 10 ^{−16} J		A1	[2]			
	(iii)	∆ <i>U</i> = = 6.6	$mgh = mgh = 10^{-27} \times 9.8 \times 14 \times 10^{-3}$		C1				
		= 9.($J6 \times 10^{-20} \mathrm{J}$		A1	[2]			
	(iv)	∆K = = 3.8	$3.84 \times 10^{-16} - \Delta U$ 34 × 10 ⁻¹⁶ J		A1	[1]			
	(v)	K =	$V_2 m v^2$		C1				
		v = [= 3.4	(2 × 3.8 × 10 ⁻¹⁶) / 6.6 × 10 ⁻²⁷] ^{1/2} 4 × 10 ⁵ m s ⁻¹		A1	[2]			
5	(a) (i)	sum	of currents into a junction = sum of currents out of jun	ction	B1	[1]			
	(ii)	char	ge		B1	[1]			
	(b) (i)	$\Sigma E = \Sigma I R$ 20 - 12 = 2 0(0.6 + R) (not used 3 resistors 0/2)							
		R =	3.4Ω		A1	[2]			
	(ii)	P = 1 = 20	EI x 2		C1				
		= 40	W		A1	[2]			
	(iii)	P = . P = .	$I^2 R$ (2) ² × (0.1 + 0.5 + 3.4)		C1				
		= 16	W		A1	[2]			
	(iv)	effic 24 /	iency = useful power / output power 40 = 0.6 or 12 × 2 / 20 × 2 or 60%		C1 A1	[2]			

Page 4				Mark Scheme: Teachers' version								Syllabus			Paper				
					GC	E AS/	A LEVEL	. –	Ma	y/Jur	ie 201	2		9	702			23	
6	(a)	(i) diffi this		fraction bending/spreading of light at edge/slit is occurs at each slit								B1 B1	[2]						
		(ii)	cons	stant	phase	differe	nce betw	ee	en ea	ach o	f the v	waves	;					B1	[1]
		(iii)	ii) (when the waves meet) the resultant displacement is the sum of the displacements of each wave										B1	[1]					
	(b)	<i>d</i> sir <i>n</i> = <i>n</i> = hen	nθ = d/λ 3.52 ice nu	$\theta = n\lambda$ / $\lambda = 1 / 450 \times 103 \times 630 \times 10^{-9}$.52 e number of orders = 3								C1 M1 A1	[3]						
	(c)	λ blue is less than λ red more orders seen each order is at a smaller angle than for the equivalent red								M1 A1 A1	[3]								
7	(a)	thin add othe	pape lition er rad	er red of 1 d diatior	luces o cm of a n is γ	count ra alumini	ate hence ium caus	eα ses	α s littl	le mo	re co	unt ra	ate rec	ductic	n hen	ice (only	B1 B1	[2]
	(b)	mao lool cha	gnetic (for a rged	c field a coui radia	perpe nt rate tion pr	ndicula in exp esent.	ar to dire ected dir If no cou	ctio ec int	on o tion rate	of radi / area e reco	ation a if the rded t	ere we then β	ere ne 6 not p	gative reser	əly nt.			B1 B1	[2]