MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	21

1 (a) (i) V units: m^{3} (allow metres cubed or cubic metres)
A1
(ii) Pressure units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} / \mathrm{m}^{2}$ (allow use of $P=\rho g h$)

Units: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
AO
(b) V / t units: $\mathrm{m}^{3} \mathrm{~s}^{-1} \quad \mathrm{~B} 1$

Clear substitution of units for P, r^{4} and l M1
$C=\frac{\pi P r^{4}}{8 V t^{-1} l}=\frac{\mathrm{kgm}^{-1} \mathrm{~s}^{-2} \mathrm{~m}^{4}}{\mathrm{~m}^{3} \mathrm{~s}^{-1} \mathrm{~m}}$
Units: $\mathrm{kgm}^{-1} \mathrm{~s}^{-1}$
A1
(8 or π in final answer -1 . Use of dimensions max 2/3)

2 (a) (i) $v=u+a t \quad$ C1
$=4.23+9.81 \times 1.51 \quad \mathrm{M} 1$
$=19.0(4) \mathrm{m} \mathrm{s}^{-1}$ (Allow 2 s.f.) A0
(Use of $-g$ max 1/2. Use of $g=10$ max 1/2. Allow use of 9.8. Allow $19 \mathrm{~ms}^{-1}$)
(ii) either $s=u t+1 / 2 a t^{2} \quad$ (or $v^{2}=u^{2}+2 a s$ etc.)

$$
\begin{array}{ll}
=4.23 \times 1.51+0.5 \times 9.81 \times(1.51)^{2} & \text { C1 } \\
=17.6 \mathrm{~m} \text { (or } 17.5 \mathrm{~m}) & \text { A1 } \\
\text { (Use of }- \text { g here wrong physics }(0 / 2) \text {) } &
\end{array}
$$

(b) (i) $F=\Delta P / \Delta t$ need idea of change in momentum
(Use of - sign max 2/4. Ignore -ve sign in answer)
Direction: upwards B1
(ii) $h=1 / 2 \times(18.6)^{2} / 9.81$
$=17.6 \mathrm{~m}(2 \mathrm{~s}$. f. -1$)$ A1
(Use of $19 \mathrm{~m} \mathrm{~s}^{-1}$, $0 / 2$ wrong physics)
(c) either kinetic energy of the ball is not conserved on impact or speed before impact is not equal to speed after hence inelastic B1

3 (a) Resultant force (and resultant torque) is zero B1
Weight (down) = force from/due to spring (up) B1
(b) (i) $0.2,0.6,1.0 \mathrm{~s}$ (one of these) A1
(ii) $0,0.8 \mathrm{~s}$ (one of these) A1
(iii) $0.2,0.6,1.0 \mathrm{~s}$ (one of these) A1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	21

(c) (i) Hooke's law: extension is proportional to the force (not mass)

B1
Linear/straight line graph hence obeys Hooke's law
B1
(ii) Use of the gradient (not just $F=k x$)

C1
$\mathrm{K}=(0.4 \times 9.8) / 15 \times 10^{-2}$
$=26(.1) \mathrm{Nm}^{-1}$
M1
AO
(iii) either energy $=$ area to left of line or energy $=1 / 2 \mathrm{ke}^{2}$

C1

$$
\begin{aligned}
& =1 / 2 \times\left[(0.4 \times 9.8) / 15 \times 10^{-2}\right] \times\left(15 \times 10^{-2}\right)^{2} \\
& =0.294 \mathrm{~J} \text { (allow } 2 \text { s.f.) }
\end{aligned}
$$

4 (a) (i) $R=V^{2} / P$ or $P=I V$ and $V=I R$

$$
\begin{aligned}
& =(220)^{2} / 2500 \\
& =19.4 \Omega \text { (allow } 2 \text { s.f.) }
\end{aligned}
$$

A1
[2]
(ii) $R=\rho l / A \quad$ C1
$l=\left[19.4 \times 2.0 \times 10^{-7}\right] / 1.1 \times 10^{-6}$ C1 $=3.53 \mathrm{~m} \quad$ (allow 2 s.f.) A1
(b) (i) $P=625,620$ or 630 W A1
(ii) R needs to be reduced

Either length $1 / 4$ of original length or area $4 \times$ greater or diameter $2 \times$ greater A1

5 (a) (i) sum of e.m.f.'s = sum of p.d.'s around a loop/circuit B1
(ii) energy

B1
(b) (i) $2.0=I \times(4.0+2.5+0.5)$

C1
$I=0.286 \mathrm{~A}$ (allow 2 s.f.) A1
(If total resistance is not $7 \Omega, 0 / 2$ marks)
(ii) $R=[0.90 / 1.0] \times 4(=3.6) \quad \mathrm{C} 1$
$V=I R=0.286 \times 3.6=1.03 \mathrm{~V}$ A1
(If factor of 0.9 not used, then $0 / 2$ marks)
(iii) $E=1.03 \mathrm{~V}$

A1
(iv) either no current through cell B or p.d. across r is zero B1

6 (a) (i) coherence: constant phase difference M1 between (two) waves A1
(ii) path difference is either λ or $n \lambda$
or phase difference is 360° or $n \times 360^{\circ}$ or $n 2 \pi$ rad B1

